Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ điều kiện đề bài ta có:
\(x^2,y^2,z^2\le1\)
Trong 3 số x, y, z có 2 số cùng dấu: Giả sử là x,y (các trường hợp khác làm tương tự)
\(\Rightarrow xy\ge0\)
Ta có:
\(x^2+y^4+z^6\le x^2+y^2+z^2\le z^2+\left(x^2+2xy+y^2\right)=2z^2\le2\)
Dấu = xảy ra khi x = 0; y = 1; z = - 1.
Vì \(x+y+z=0.\)
\(\Rightarrow x+y=-z.\)
Ta có:
\(-1\le x\le1;-1\le y\le1;-1\le z\le1.\)
\(\Leftrightarrow x^2;y^2;z^2\le1\)
Trong 3 số x ; y ; z có ít nhất 2 số cùng dấu (giả sử là x ; y). Ta có:
\(xy\ge0\)
\(\Rightarrow2xy\ge0\)
Có:
\(x^2+y^4+z^6=x^2+y^2.y^2+z^2.z^2.z^2\)
\(\Rightarrow x^2+y^4+z^6\le x^2+y^2+z^2\) (1).
Ta phải chứng minh \(x^2+y^2+z^2\le2.\)
Có:
\(x^2+y^2+z^2\le x^2+y^2+z^2+2xy.\)
\(\Rightarrow x^2+y^2+z^2\le\left(x+y\right).2+z^2\)
\(\Rightarrow x^2+y^2+z^2\le\left(-z\right).2+z^2\)
\(\Rightarrow x^2+y^2+z^2\le2z^2\le2\) (2).
Từ (1) và (2) \(\Rightarrow x^2+y^4+z^6\le2\left(đpcm\right).\)
Chúc em học tốt!
b gipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipụt
a) Ta có: \(|\frac{1}{2}x-3y+1|\ge0\) và \(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\)
=> \(|\frac{1}{2}x-3y+1|=-\left(x-1\right)^2=0\)
=> x-1=0
=> x=1
\(|\frac{1}{2}x-3y+1|=0\)
=> \(\frac{1}{2}.1-3y+1=0\)
=> \(\frac{1}{2}-3y=-1\)
=> \(3y=\frac{1}{2}-\left(-1\right)\)
=>\(3y=\frac{1}{2}+1=\frac{3}{2}\)
=> \(y=\frac{3}{2}:3=\frac{3}{2}.\frac{1}{3}=\frac{1}{2}\)
b) Có: \(x^2\le y;y^2\le z;z\le x\)
=> \(x^4\le y^2\) và \(y^2\le x\)
=> \(x^4\le x\)
=> \(x^4=x\)
=> \(x\in\left\{0;1\right\}\)
Có: \(x^4\le y^2\); \(y^2\le z\)và \(z\le x\)
=> \(x^4\le z\le x\)
Mà \(x^4=x\)
=> \(x^4=x=z\)
=> \(z\in\left\{0;1\right\}\)
Có: \(x^4\le y^2\)và \(y^2\le z\)
=> \(x^4\le y^2\le z\)
Mà \(x^4=x=z\)
=> \(x^4=y^2\)
=> \(y^2\in\left\{0;1\right\}\)
=> \(y\in\left\{0;1\right\}\)
c)=> \(z=\frac{8-x}{3}\)và \(y=\frac{9-2}{2}\)
=> \(x+y+z=x+\frac{9-x}{2}+\frac{8-x}{3}=\frac{6x}{6}+\frac{27-3x}{6}+\frac{16-2x}{6}=\frac{6x+27-3x+16-2x}{6}\)
\(=\frac{x+43}{6}\)
..........Chỗ này?! Có gì đó sai sai.........
Mình nghĩ là \(x;y;z\in N\)thì mới đúng, chứ không âm thì nó có thể làm số thập phân...........Bạn xem lại cái đề đi
d) => \(a^2bc=-4;ab^2c=2;abc^2=-2\)
=> \(ab^2c+abc^2=2+\left(-2\right)=0\)
=> \(abc\left(b+c\right)=0\)
Mà a;b;c là 3 số khác 0
=> \(abc\ne0\)
=> \(b+c=0\)
=> \(b=-c\)
\(a^2bc+ab^2c-abc^2=-4+2-\left(-2\right)=0\)
=> \(abc\left(a+b-c\right)=0\)
Mà \(abc\ne0\)
=> \(a+b-c=0\)
\(a^2bc-abc^2=-4-\left(-2\right)=-2\)
=> \(abc\left(a-c\right)=-2\)
Mà \(abc\ne0\)
=>\(a-c=-2\)
Có \(a+b-c=0\)
=> \(\left(a-c\right)+b=0\)
=> \(-2+b=0\)
=> \(b=2\)
\(b=-c=2\)=> \(c=-2\)
=> \(a-\left(-2\right)=-2\)
=> \(a+2=-2\)
=> \(a=-2-2=-4\).....................Mình cũng thấy cái này lạ lạ à nha....... Bạn mò thử đi, chắc ra -__-
Mỏi tay quáááá
vào câu hỏi tương tự có lẽ sẽ gợi cho bn ý tưởng để làm bài này đó
chúc học tốt !
Do \(x+y+z=0;-1\le x,y,z\le1\)
Suy ra : Trong 3 số x,y,z tồn tại hai số cùng dấu
Giả sử : \(x\ge0;y\ge0;z\le0\)
Từ : \(x+y+z=0\)\(\Rightarrow z=-x-y\)
\(x^2+y^4+z^6\le\left|x\right|+\left|y\right|+\left|z\right|=x+y-z=-2z\)
\(\Rightarrow x^2+y^4+z^6\le-2z\le2\)
Vậy : \(x^2+y^4+z^6\le2\)
Xét x=0,x=1 thì thỏa mãn
Xét x khác 0,1
Dùng phản chứng là ra mà "<<
Với mọi số nguyên n ta có n <= n2 . Do đó từ đề bài suy ra :
x2 <= y <= y2 <= z <= z2 <= x <= x2.
Do đó x^2 = y = y^2 = z = z^2 = x = x^2.
Ta có : x^2 = x <=> x(x-1) = 0 <=> x = 0 và x = 1
Tương tự như thế
Vậy : ...