Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\frac{x+11}{x-6}=\frac{x-6+17}{x-6}=\frac{x-6}{x-6}+\frac{17}{x-6}\)
=>x-6\(\in\) Ư(17)
x-6 | 1 | -1 | 17 | -17 |
x | 7 | 5 | 23 | -11 |
a) Vì x+3 chia hết cho x-2 suy ra (x-2)+5 chia hết cho x-2.
Từ đây, ta có 5 cũng chia hết cho x-2, suy ra: x-2 thuộc Ư(5)
Ư(5)={-5; -1; 1; 5}
x-2 | -5 | -1 | 1 | 5 |
x | -3 | 1 | 3 | 7 |
b)
a, Ta có x-4 \(⋮\)x+1
\(\Rightarrow\left(x+1\right)-5⋮x+1\)
\(\Rightarrow x+1\inƯ\left(5\right)=\left\{-1;-5;1;5\right\}\)
Ta có bảng giá trị
x+1 | -1 | -5 | 1 | 5 |
x | -2 | -6 | 0 | 4 |
Vậy x={-2;-6;0;4}
b.2x +5=2x-2+7=2(x-1)+7
=> 7 chiahetcho x-1
tu lam
c.4x+1 = 4x+4+(-3)=2(2x+2)-3
tu lAM
d.x^2-2x+3=x^2-2x+1+2=(x+1)^2+2
tu lam
e.x(x+3)+9=>
tu lam
a, (x+3)(y+2) = 1
=> (x+3) \(\in\)Ư(1) = \(\left\{-1;1\right\}\)
Do (x+3)(y+2) là số dương
=> (x+3) và (y+2) cùng dấu
\(\Rightarrow\hept{\begin{cases}x+3=1\\y+2=1\end{cases}}\)hay \(\hept{\begin{cases}x+3=-1\\y+2=-1\end{cases}}\)
TH1:
\(\hept{\begin{cases}x+3=1\\y+2=1\end{cases}\Rightarrow\hept{\begin{cases}x=-2\\y=-1\end{cases}}}\)
TH2:
\(\hept{\begin{cases}x+3=-1\\y+2=-1\end{cases}\Rightarrow\hept{\begin{cases}x=-4\\y=-3\end{cases}}}\)
Vậy ............
b, (2x - 5)(y-6) = 17
=> \(\left(2x-5\right)\inƯ\left(17\right)=\left\{\pm1;\pm17\right\}\)
Ta có bảng sau:
2x - 5 | -17 | -1 | 1 | 17 |
x | -6 | 2 | 3 | 11 |
y - 6 | -1 | -17 | 17 | 1 |
y | 5 | -11 | 23 | 7 |
Vậy \(\left(x,y\right)\in\left\{\left(-6,5\right);\left(2,-11\right);\left(3,23\right);\left(11,7\right)\right\}\)
c, Tương tự câu b
Bài 1:
A = 32 + 33 + 34 + ... + 32018
3A = 33 + 34 + 35 + ... + 32019
3A - A = (33 + 34 + 35 + ... + 32019) - (32 + 33 + 34 + ... + 32018)
2A = 32019 - 9
A = (32019 - 9) : 2
= (32016.33 - 9) : 2
= [ (34)504.27 - 9] : 2
= [ (...1)504.27 - 9] : 2
= [ (...1).27 - 9] : 2
= [ (...7) - 9] : 2
= (....8) : 2
= ...4
Vậy c/s tận cùng của A là 4
Bài 2:
Ta có:
1019 + 1018 + 1017
= 1016.103 + 1016.102 + 1016.10
= 1016.(103 + 102 + 10)
= 1016.1110
= 1016.2.555
Vì 555 chia hết cho 555 nên 1016.2.555 chia hết cho 555
Vậy 1019 + 1018 + 1017 chia hết cho 555 (đpcm)
Bài 3:
x + 6 chia hết cho x + 2
=> x + 2 + 4 chia hết cho x + 2
=> 4 chia hết cho x + 2
=> x + 2 thuộc Ư(4) = {\(\pm1;\pm2;\pm4\)}
x + 2 | 1 | -1 | 2 | -2 | 4 | -4 |
x | -1 | -3 | 0 | -4 | 2 | -6 |
Vậy x = {-1;-3;0;-4;2;-6}
Bài 4:
Giả sử x + 4y chia hết cho 7 (1)
Vì 3x + 5y chia hết cho 7 nên 2(3x + 5y) chia hết cho 7
=> 6x + 10y chia hết cho 7 (2)
Từ (1) và (2) => (x + 4y) + (6x + 10y) chia hết cho 7
=> x + 4y + 6x + 10y chia hết cho 7
=> (x + 6x) + (4y + 10y) chia hết cho 7
=> 7x + 14y chia hết cho 7
=> 7(x + 2y) chia hết cho 7
=> Giả sử đúng
Vậy x + 4y chia hết cho 7 (đpcm)
Bài 5:
1, Ta có: \(-\left(x+2\right)^{2018}\le0\)
\(\Rightarrow-1-\left(x+2\right)^{2018}\le0\)
\(\Rightarrow A\le0\)
Dấu " = " xảy ra <=> (x + 2)2018 = 0 <=> x = -2
Vậy GTNN của A là -1 khi x = -2
2, Ta có: \(x^2\ge0\)
\(\left|2y-18\right|\ge0\)
\(\Rightarrow x^2+\left|2y-18\right|\ge0\)
\(\Rightarrow-9+x^2+\left|2y-18\right|\ge-9\)
Dấu " = " xảy ra <=> \(\left\{\begin{matrix}x^2=0\\\left|2y-18\right|=0\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}x=0\\y=9\end{matrix}\right.\)
Vậy GTLN của B là -9 khi \(\left\{\begin{matrix}x=0\\y=9\end{matrix}\right.\)
Bài 6:
1, xy + 2x - y - 2 = 5
<=> x(y + 2) - (y + 2) = 5
<=> (x - 1)(y + 2) = 5
=> x - 1 và y + 2 thuộc Ư(5) = {\(\pm1;\pm5\)}
Ta có bảng:
x - 1 | 1 | -1 | 5 | -5 |
y + 2 | 5 | -5 | 1 | -1 |
x | 2 | 0 | 6 | -4 |
y | 3 | -7 | -1 | -3 |
Vậy các cặp (x;y) là (2;3) ; (0;-7) ; (6;-1) ; (-4;-3)
2, x + y = 2xy
<=> 2xy - x - y = 0
<=> 2(2xy - x - y) = 2.0
<=> 4xy - 2x - 2y = 0
<=> (4xy - 2x) - 2y - 1 = 0 - 1
<=> 2x(2y - 1) - (1 - 2y) = -1
<=> (2x - 1)(1 - 2y) = -1
=> 2x - 1 và 1 - 2y thuộc Ư(-1) = {\(\pm1\)}
Ta có bảng:
2x - 1 | 1 | -1 |
1 - 2y | -1 | 1 |
x | 1 | 0 |
y | 1 | 0 |
b) chịu
c)x(5y+5)+2y=-16
x(5y+5)+2(5y+5)=-80
(5y+5).(x+2)=-80
=>5y+5;x+2 \(\in\)Ư(-80)
Mà 3x+5 chia hết cho x-2 => [(3x+5)-(3x-6)] Có x-2 chia hết cho x-2 =>3x-6 chia hết cho x-2 => chia hết x-2 11 chia hết x-2 Lập bảng x-2 x 1 3 11 13 -1 1 -11 -9