Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Answer:
\(3xy-2y=x^2+5\)
\(\Rightarrow y\left(3x-2\right)=x^2+5\) (1)
Mà x và y nguyên \(\Rightarrow x^2+5⋮3x-2\)
\(\Rightarrow9\left(x^2+5\right)⋮3x-2\)
\(\Rightarrow9x^2-6x+6x-4+49⋮3x-2\)
\(\Rightarrow49⋮3x-2\)
\(\Rightarrow3x-2\in\left\{\pm49;\pm7;\pm1\right\}\)
\(\Rightarrow3x\in\left\{51;9;3;-5;1;-47\right\}\)
\(\Rightarrow x\in\left\{1;3;7\right\}\)
Trường hợp 1: Với \(x=1\) ta thay vào (1)
\(\Rightarrow y=6\)
Trường hợp 2: Với \(x=3\) ta thay vào (1)
\(\Rightarrow y=2\)
Trường hợp 3: Với \(x=7\)ta thay vào (1)
\(\Rightarrow y=6\)
Đặt \(\dfrac{x}{y}=\dfrac{z}{t}=k\Rightarrow x=ky;z=kt\)
Xét \(VT=\dfrac{2x^2-3xy+5y^2}{2y^2+3xy}=\dfrac{2\left(ky\right)^2-3ky\cdot y+5y^2}{2y^2+3ky\cdot y}\)
\(=\dfrac{2k^2y^2-3ky^2+5y^2}{2y^2+3ky^2}=\dfrac{y^2\left(2k^2-3k+5\right)}{y^2\left(2+3k\right)}=\dfrac{2k^2-3k+5}{3k+5}\)
Và \(VP=\dfrac{2z^2-3zt+5t^2}{2t^2+3zt}=\dfrac{2\left(kt\right)^2-3kt\cdot t+5t^2}{2t^2+3kt\cdot t}\)
\(=\dfrac{2k^2t^2-3kt^2+5t^2}{2t^2+3kt^2}=\dfrac{t^2\left(2k^2-3k+5\right)}{t^2\left(2+3k\right)}=\dfrac{2k^2-3k+5}{3k+5}\)
Dễ thấy \(VT=VP\)\(\forall \frac{x}{y}=\frac{z}{t}\) nên ta có ĐPCM