Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xy+3x-y=6
=>x(y+3)-y-3=6-3
=>x(y+3)-(y+3)=3
=>(x-1)(y+3)=3
từ đó lập bảng
\(x-y=-30\Rightarrow\dfrac{x}{-30}=\dfrac{1}{y}\\ y.z=-42\\ \Rightarrow\dfrac{z}{-42}=\dfrac{1}{y}\\ \Rightarrow\dfrac{x}{-30}=\dfrac{z}{-42}\)
Áp dụng TCDTSBN ta có:
\(\dfrac{x}{-30}=\dfrac{z}{-42}=\dfrac{z-x}{-42-\left(-30\right)}=\dfrac{-12}{-12}=1\)
\(\dfrac{x}{-30}=1\Rightarrow x=-30\\ \dfrac{z}{-42}=1\Rightarrow z=-42\)
\(x.y=-30\Rightarrow-30.y=-30\Rightarrow y=1\)
Bài 1:
Gọi độ dài các cạnh của tam giác đó lần lượt là x;y;z ( x;y;z > 0)
Ta có: \(\frac{x}{4}=\frac{y}{7}=\frac{z}{5};x+y+z=48\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{4}=\frac{y}{7}=\frac{z}{5}=\frac{x+y+z}{4+7+5}=\frac{48}{16}=3\)
\(\Rightarrow\frac{x}{4}=3\Rightarrow x=3.4=12\)
\(\frac{y}{7}=3\Rightarrow y=3.7=21\)
\(\frac{z}{5}=3\Rightarrow z=3.5=15\)
Vậy độ dài các cạnh của tam giác đó lần lượt là: 12;21;15
thank trc ^~^
bai1;a) cộng 2 vế của pt có;
x(x+y+z) +y(x+y+z) +z(x+y+z) = -5+9+5
(x+y+z)2 =9 => x+y+z = 3
x = -5/3
y = 9/3 =3
z = 5/3
b) x = 1/2 ; y =1
bai2;M = (a+b+c) / 2(a+b+c) = 1/2 không phải là số nguyên
2)
+Áp dụng : \(\frac{a}{a+b}>\frac{a}{a+b+c}\Rightarrow M>1\)
+ Áp dụng : \(\frac{a}{a+b}< \frac{a+c}{a+b+c}\Rightarrow M< 2\)
2>M>1 => M không là số nguyên.
ta co |x+7|+|12+x|=5
=>x+7=5=>x=-2(loại)
=>12+x=5=>x=-7 (tm)
=>x=-7
bn thử lấy máy tính mà bấm xem đúng ko nhé