K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2017

Ta có: \(\sqrt{x+1}+\sqrt{y-1}\le\sqrt{2\left(x+y\right)}\)

\(\Leftrightarrow\sqrt{2\left(x-y\right)^2+10x-6y+8}\le\sqrt{2\left(x+y\right)}\)

\(\Leftrightarrow2\left(x-y\right)+10x-6y+8\le2\left(x+y\right)\)

\(\Leftrightarrow2\left(x-y\right)^2+8\left(x-y\right)+8\le0\)

\(\Leftrightarrow2\left(x-y+2\right)^2\le0\)

Dấu = xảy ra khi \(\hept{\begin{cases}x+1=y-1\\x-y+2=0\end{cases}\Leftrightarrow}y=x+2\)

Thế vào P ta được

\(P=x^4+\left(x+2\right)^2-5x-5\left(x+2\right)+2020\)

\(=x^4+2x^2-6x+2014\)

\(=\left(x^2-1\right)^2+3\left(x-1\right)^2+2010\ge2010\)

Vậy GTNN là  P = 2010 đạt được khi x = 1, y = 3

10 tháng 12 2017

Ta có: √x+1+√y−1≤√2(x+y)

⇔√2(x−y)2+10x−6y+8≤√2(x+y)

⇔2(x−y)+10x−6y+8≤2(x+y)

⇔2(x−y)2+8(x−y)+8≤0

⇔2(x−y+2)2≤0

Dấu = xảy ra khi {

x+1=y−1
x−y+2=0

⇔y=x+2

Thế vào P ta được

P=x4+(x+2)2−5x−5(x+2)+2020

=x4+2x2−6x+2014

=(x2−1)2+3(x−1)2+2010≥2010

Vậy GTNN là  P = 2010 đạt được khi x = 1, y = 3

DD
13 tháng 5 2021

\(x^3+y^3+xy=x^2+y^2\)

\(\Leftrightarrow\left(x+y-1\right)\left(x^2-xy+y^2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+y=1\\x^2-xy+y^2=0\end{cases}}\)

\(x^2-xy+y^2=0\Rightarrow x=y=0\Rightarrow P=\frac{5}{2}\).

\(x+y=1\Rightarrow0\le x,y\le1\).

\(P=\frac{1+\sqrt{x}}{2+\sqrt{y}}+\frac{2+\sqrt{x}}{1+\sqrt{y}}\ge\frac{1}{2+\sqrt{y}}+\frac{2}{1+\sqrt{y}}\ge\frac{1}{2+1}+\frac{2}{1+1}=\frac{4}{3}\)

Dấu \(=\)xảy ra tại \(x=0,y=1\).

\(P=\frac{1+\sqrt{x}}{2+\sqrt{y}}+\frac{2+\sqrt{x}}{1+\sqrt{y}}\le\frac{1+\sqrt{x}}{2}+\frac{2+\sqrt{x}}{1}\le\frac{1+1}{2}+\frac{2+1}{1}=4\)

Dấu \(=\)xảy ra tại \(x=1,y=0\).

26 tháng 2 2018

\(VT=\frac{x}{\sqrt[3]{yz}}+\frac{y}{\sqrt[3]{xz}}+\frac{z}{\sqrt[3]{xy}}\)

\(\ge\frac{3x}{y+z+1}+\frac{3y}{x+z+1}+\frac{3z}{x+y+1}\)

\(=\frac{3x^2}{xy+xz+x}+\frac{3y^2}{xy+yz+y}+\frac{3z^2}{xz+yz+z}\)

\(\ge\frac{3\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x+y+z}\)

\(\ge\frac{3\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x^2+y^2+z^2}\)

\(\ge\frac{3\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=3=x^2+y^2+z^2\ge xy+yz+xz=VP\)

Dấu "=" <=> x=y=z=1

14 tháng 6 2018

\(1>=\left(x+y\right)^2>=\left(2\sqrt{xy}\right)^2=4xy\Rightarrow1>=4xy\Rightarrow\frac{1}{2}>=2xy\)(bđt cosi)

\(\Rightarrow\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{2xy}>=\frac{4}{x^2+2xy+y^2}+\frac{1}{\frac{1}{2}}\)

\(=\frac{4}{\left(x+y\right)^2}+2>=\frac{4}{1^2}+2=4+2=6\)

dấu = xảy ra khi \(x=y=\frac{1}{2}\)

vậy min \(\frac{1}{x^2+y^2}+\frac{1}{xy}=6\)khi \(x=y=\frac{1}{2}\)

15 tháng 12 2015

GTLN =3

GTNN = 1