K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2018

a) x2y + 2x2 -y2+1=0

<=> x2.(1+y)-(y-1)(y+1)=0

<=> (1+y).(x2-y+1)=0

\(\Rightarrow\left\{{}\begin{matrix}y+1=0\\x^2-y+1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=-1\\x=\phi\end{matrix}\right.\)

19 tháng 10 2017

Bài 1:

a) 25x2 - 10xy + y2 = (5x - y)2

b) 81x2 - 64y2 = (9x)2 - (8y)2 = (9x - 8y)(9x + 8y)

c) 8x3 + 36x2y + 54xy2 + 27y3

= 8x3 + 27y3 + 36x2y + 54xy2

= (2x + 3y)(4x2 - 6xy + 9y2) + 18xy(2x + 3y)

= (2x + 3y)(4x2 - 6xy + 18xy + 9y2)

= (2x + 3y)(4x2 + 12xy + 9y2)

= (2x + 3y)(2x + 3y)2 = (2x + 3y)3

c) (a2 + b2 - 5)2 - 4(ab + 2)2 = (a2 + b2 - 5)2 - 22(ab + 2)2

= (a2 + b2 - 5)2 - (2ab + 4)2

= (a2 + b2 - 5 - 2ab - 4)(a2 + b2 - 5 + 2ab + 4)

= (a2 - 2ab + b2 - 9)(a2 + 2ab + b2 - 1)

= \(\left [ (a - b)^{2} - 3^{2} \right ]\)\(\left [ (a + b)^{2} - 1\right ]\)

= (a - b - 3)(a - b + 3)(a + b - 1)(a + b + 1)

pn đăng mỗi lần vài bài thôi chứ đăng nhìn ngán lắm

19 tháng 10 2017

Bài 2:

a) 2x3 + 3x2 + 2x + 3

= 2x3 + 2x + 3x2 + 3

= 2x(x2 + 1) + 3(x2 + 1)

= (x2 + 1)(2x + 3)

b)x3z + x2yz - x2z2 - xyz2

= xz(x2 + xy - xz - yz)

= \(xz\left [ x(x + y) - z(x + y) \right ]\)

= xz(x + y)(x - z)

c) x2y + xy2 - x - y

= xy(x + y) - (x + y)

= (x + y)(xy - 1)

d) 8xy3 - 5xyz - 24y2 + 15z

= 8xy3 - 24y2 - 5xyz + 15z

= 8y2(xy - 3) - 5z(xy - 3)

= (xy - 3)(8y2 - 5z)

e) x3 + y(1 - 3x2) + x(3y2 - 1) - y3

= x3 - y3 + y - 3x2y + 3xy2 - x

= (x - y)(x2 + xy + y2) - 3xy(x - y) - (x - y)

= (x - y)(x2 + xy + y2 - 3xy - 1)

= (x - y)(x2 - 2xy + y2 - 1)

= \((x - y)\left [ (x - y)^{2} - 1 \right ]\)

= (x - y)(x - y - 1)(x - y + 1)

câu f tương tự

22 tháng 6 2015

9x2 + y2 + 2z2 - 18x + 4z - 6y + 20 = 0

<=>9x2-18x+9+y2-6y+9+2z2+4z+2=0

<=>(3x-3)2+(y-3)2+2(z2+2z+1)=0

<=>(3x-3)2+(y-3)2+2(z+1)2=0

=>3x-3=0 và y-3=0 và z+1=0

<=>x=1 và y=3 và z=-1

 

 

21 tháng 3 2018

\(9x^2+y^2+2z^2-18x+4z-6y+20=0\)

\(\Leftrightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)+2\left(z^2+2z+1\right)=0\)

\(\Leftrightarrow\left(3x-3\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\)

Suy ra hoặc \(3x-3=0\Leftrightarrow x=1\)

            hoặc \(y-3=0\Leftrightarrow y=3\)

            hoặc \(z+1=0\Leftrightarrow z=-1\)

26 tháng 12 2018

1) 4x\(^2\).(5x3+2x-1)

= 20x\(^5\)+8x\(^3\)-4x\(^2\).

2) 4x\(^3\): x2

= 4x

3) ( 15x2y3-10x3y3+6xy): 5xy

= 3xy2-2x2y2+\(\dfrac{6}{5}\)

4) (5x3+14x2+12x+8 ): (x+2)

= 5x2+4x+4

5)\(\dfrac{7}{2x}\)+\(\dfrac{11}{3y^2}\)

=\(\dfrac{7.3y^2+11.2x}{6xy^2}\) =\(\dfrac{21y^2+22x}{6xy^2}\) = \(\dfrac{21+22}{6}\) =\(\dfrac{43}{6}\)

6) \(\dfrac{x}{x+2}\) +\(\dfrac{3}{\left(x+2\right)\left(4x-7\right)}\)

7)\(\dfrac{3}{x-y}\)-\(\dfrac{2x^2}{x+y}\)

= \(\dfrac{3\left(x+y\right)-2\left(x+y\right)}{\left(x-y\right)\left(x+y\right)}\)=\(\dfrac{3x+3y-2x-2y}{\left(x-y\right)\left(x+y\right)}\)=\(\dfrac{x+y}{\left(x-y\right)\left(x+y\right)}\)=\(\dfrac{1}{x-y}\).

8)\(\dfrac{1}{2}\)x2y2.(2x+y)(2x-y)

= \(\dfrac{1}{2}\)x2y2.(4x2-2xy+2xy-y2)

= \(\dfrac{1}{2}\)x2y2.(4x2-y2)

= 2x4y2-\(\dfrac{1}{2}\)x2y4

9) (x-\(\dfrac{1}{2}\)).(x+\(\dfrac{1}{2}\)).(4x-1)

= x2.(4x-1)

= 4x3-x2

10)\(\dfrac{3x}{2x+6}\)+\(\dfrac{6-x}{2x^2+6x}\)

= \(\dfrac{3x}{2\left(x+3\right)}\)+\(\dfrac{6-x}{2x\left(x+3\right)}\)= \(\dfrac{3x^2+6-x}{2x\left(x+3\right)}\)=\(\dfrac{3-x}{3}\)= -x

11) x2-\(\dfrac{1}{2x-2}\)+3x+\(\dfrac{3}{1-x^2}\)

12)\(\dfrac{x^2}{x^2-y^2}\)-\(\dfrac{x-y}{x^2-y^2}\)

= \(\dfrac{x^2-xy}{\left(x-y\right)\left(x+y\right)}\)=\(\dfrac{x\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}\)= \(\dfrac{x}{x+y}\)

26 tháng 12 2018

cảm ơn bạn nhé ^^

7 tháng 2 2020

a, 5x2 - 45x = 5x(x - 9)

b, 3x3y - 6x2y - 3xy3 - 6axy2 - 3a2xy + 3xy

= 3xy(x2 - 2x - y2 - 2ay - a2 + 1)

= 3xy[ (x2 - 2x + 1) - (a2 + 2ay + y2) ]

= 3xy[ (x - 1)2 - (a + y)2 ]

= 3xy(x - 1 + a + y)(x - 1 - a - y)

f, 3xy2 - 12xy + 12x

= 3x(y2 - 4y + 4)

= 3x(y - 2)2

g, 2x2 - 8x + 8

= 2(x2 - 4x + 4)

= 2(x - 2)2

h, 5x3 + 10x2y + 5xy2

= 5x( x2 + 2xy + y2 )

= 5x(x + y)2

k, x2 + 4x - 2xy - 4y + y2

= (x2 - 2xy + y2) + (4x - 4y)

= (x - y)2 + 4(x - y)

= (x - y)(x - y + 4)

i, x3 + ax2 - 4a - 4x

= (x3 - 4x) + (ax2 - 4a)

= x(x2 - 4) + a(x2 - 4)

= (x + a)(x2 - 4)

= (x + a)(x + 2)(x - 2)

Chúc bạn học tốt !

11 tháng 2 2020

thanks

* Phân tích đa thức thành nhân tử: 1/ 25x2 - 10xy + y2 2/ 8x3 + 36x2y + 54xy2 + 27y3 3/ (a2 + b2 - 5)2 - 4 (ab + 2)2 4/ (a + b + c)3 - a3 - b3 - c3 5/ 2x3 + 3x2 + 2x + 3 6/ x3z + x2yz - x2z2 - xyz2 7/ x3 + y (1 - 3x2) + x (3y2 - 1) - y3 8/ x3 + 3x2y + 3xy2 + y + y3 9/ x2 - 6x + 8 10/ x2 - 8x + 12 11/ a2 (b - c) + b2 (c - a) + c2 (a - b) 12/ x3 - 7x - 6 13/ x4 + 4 14/ a4 + 64 15/ x5 + x + 1 16/ x5 + x - 1 17/ (x2 + x)2 - 2 (x2 + x) - 15 18/ (x + 2) (x + 3) (x + 5) -...
Đọc tiếp

* Phân tích đa thức thành nhân tử:

1/ 25x2 - 10xy + y2

2/ 8x3 + 36x2y + 54xy2 + 27y3

3/ (a2 + b2 - 5)2 - 4 (ab + 2)2

4/ (a + b + c)3 - a3 - b3 - c3

5/ 2x3 + 3x2 + 2x + 3

6/ x3z + x2yz - x2z2 - xyz2

7/ x3 + y (1 - 3x2) + x (3y2 - 1) - y3

8/ x3 + 3x2y + 3xy2 + y + y3

9/ x2 - 6x + 8

10/ x2 - 8x + 12

11/ a2 (b - c) + b2 (c - a) + c2 (a - b)

12/ x3 - 7x - 6

13/ x4 + 4

14/ a4 + 64

15/ x5 + x + 1

16/ x5 + x - 1

17/ (x2 + x)2 - 2 (x2 + x) - 15

18/ (x + 2) (x + 3) (x + 5) - 24

19/ (x2 + 8x + 7) (x2 + 8x + 15) + 15

20/ (x2 + 3x + 1) (x2 + 3x + 2) - 6

21/ x2 + 4xy + 3y2

22/ 2x2 - 5xy + 2y2

23/ x2 (y - z) + y2 (z - x) + z2 (x - y)

24/ 2x2 - 7xy + 3y2 + 5xz - 5yz + 2z2

25/ x2 - 7x + 10

26/ 4x2 - 3x - 1

27/ x2 - x - 12

28/ bc (b + c) + ac (c - a) - ab (a + b)

29/ x2y + xy2 + x2z + xz2 + y2z + yz2 + 2xyz

30/ (a - b)3 + (b - c)3 + (c - a)3

31/ ab (a - b) + bc (b - c) + ca (c - a)

32/ bc (b + c) + ca (c + a) + ba (a + b) + 2abc

Giúp mình với, giải chi tiết nha, nhiều bài mà mình đang cần gấp lắm!

3
18 tháng 9 2018

1, \(25x^2-10xy+y^2=\left(5x-y\right)^2\)

2, \(8x^3+36x^2y+54xy^2+27y^3=\left(2x+3y\right)^3\)

4, \(\left(a+b+c\right)^3-a^3-b^3-c^3\)

\(=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(a+c\right)-a^3-b^3-c^3\)

\(=3\left(a+b\right)\left(b+c\right)\left(a+c\right)\)

5, \(2x^3+3x^2+2x+3\)

\(=x^2\left(2x+3\right)+2x+3\)

\(=\left(x^2+1\right)\left(2x+3\right)\)

6, \(x^3z+x^2yz-x^2z^2-xyz^2\)

\(=x^3z-x^2z^2+x^2yz-xy^2\)

\(=xz\left(x^2-xz\right)+xz\left(xy-yz\right)\)

\(=xz\left[x\left(x-z\right)+y\left(x-z\right)\right]\)

\(=xz\left(x+y\right)\left(x-z\right)\)

8, \(x^3+3x^2y+3xy^2+y+y^3\)\(=\left(x+y\right)^3+y\)

9, \(x^2-6x+8\)

\(=x^2-4x-2x+8\)

\(=x\left(x-4\right)-2\left(x-4\right)\)

\(=\left(x-2\right)\left(x-4\right)\)

10, \(x^2-8x+12\)

\(=x^2-6x-2x+12\)

\(=x\left(x-6\right)-2\left(x-6\right)\)

\(=\left(x-2\right)\left(x-6\right)\)

Chỗ còn lại mai làm nốt nha.

19 tháng 9 2018

Gặp chút sự cố đăng nhập nên hơi muộn, xin lỗi nha

11, \(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)

\(=a^2b-a^2c+b^2c-b^2a+c^2a-c^2b\)

\(=a^2b-ab^2+abc-a^2c+b^2c-abc+ac^2-c^2b\)

\(=ab\left(a-b\right)-ac\left(a-b\right)-bc\left(a-b\right)+c^2\left(a-b\right)\)

\(=\left(a-b\right)\left(ab-ac-bc+c^2\right)\)

\(=\left(a-b\right)\left[b\left(a-c\right)-c\left(a-c\right)\right]\)

\(=\left(a-b\right)\left(a-c\right)\left(b-c\right)\)

12, \(x^3-7x-6\)

\(=x^3-3x^2+3x^2-9x+2x-6\)

\(=x^2\left(x-3\right)+3x\left(x-3\right)+2\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2+3x+2\right)\)

\(=\left(x-3\right)\left(x^2+x+2x+2\right)\)

\(=\left(x-3\right)\left[x\left(x+1\right)+2\left(x+1\right)\right]\)

\(=\left(x-3\right)\left(x+2\right)\left(x+1\right)\)

13, \(x^4+4\)

\(=x^4+4x^2+4-4x^2\)

\(=\left(x^2+2\right)^2-4x^2\)

\(=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)

14, \(a^4+64\)

\(=a^4+16a^2+64-16a^2\)

\(=\left(a^2+8\right)^2-16a^2\)

\(=\left(a^2-4a+8\right)\left(a^2+4a+8\right)\)

15, \(x^5+x+1\)

\(=x^5-x^2+x^2+x+1\)

\(=x^2\left(x^3-1\right)+x^2+x+1\)

\(=x^2\left(x-1\right)\left(x^2+x+1\right)+x^2+x+1\)

\(=\left(x^2+x+1\right)\left[x^2\left(x-1\right)+1\right]\)

16, \(x^5+x-1\)

\(=x^5-x^4+x^3+x^4-x^3+x^2-x^2+x-1\)

\(=x^3\left(x^2-x+1\right)-x^2\left(x^2-x+1\right)-\left(x^2-x+1\right)\)

\(=\left(x^2-x+1\right)\left(x^3-x^2-1\right)\)

17, \(\left(x^2+x\right)^2-2\left(x^2+x\right)-15\)

\(=\left(x^2+x\right)\left(x^2+x-2\right)-15\)

19, \(\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\) (*)

Đặt \(x^2+8x+7=a\) ta có:

(*) \(\Leftrightarrow a\left(a+8\right)+15\)

\(\Leftrightarrow a^2+8a+15\)

\(\Leftrightarrow a^2+3a+5a+15\)

\(\Leftrightarrow a\left(a+3\right)+5\left(a+3\right)\)

\(\Leftrightarrow\left(a+3\right)\left(a+5\right)\)

Trả lại biến cũ ta có: (*) \(\Leftrightarrow\left(x^2+8x+10\right)\left(x^2+8x+12\right)\)

20, \(\left(x^2+3x+1\right)\left(x^2+3x+2\right)-6\) (*)

Đặt \(x^2+3x+1=a\) ta có:

(*) \(\Leftrightarrow a\left(a+1\right)-6\)

\(\Leftrightarrow a^2+a-6\)

\(\Leftrightarrow a^2+3a-2a-6\)

\(\Leftrightarrow a\left(a+3\right)-2\left(a+3\right)\)

\(\Leftrightarrow\left(a-2\right)\left(a+3\right)\)

Trả lại biến cũ ta có: (*) \(\Leftrightarrow\left(x^2+3x-1\right)\left(x^2+3x+5\right)\)

17 tháng 10 2017

$a)$ \(x^{12}:\left(-x\right)^6\)

\(=x^{12}:x^6\)

\(=x^{12-6}\)

\(=x^6\)

$b) $ \(\left(-x\right)^7:\left(-x\right)^5\)

\(=\left(-x\right)^{7-5}\)

\(=\left(-x\right)^2\)

\(=x^2\)

$c)$ \(5x^2y^4:10x^2y\)

\(=\dfrac{1}{2}y^3\)

$e)$ \(\left(-xy\right)^{14}:\left(-xy\right)^7\)

\(=\left(-xy\right)^{14-7}\)

\(=\left(-xy\right)^7\)

Các câu còn lại tương tự nha bạn!

15 tháng 10 2017

Bài 1 :

a) 3x2 . ( 5x2 - 7x + 4 ) = 15x4 - 21x3 + 12x2

b) xy2 . ( 2x2y - 5xy + y ) = 2x3y3 - 5x2y3 + xy3

c) ( 2x2 - 5x ) . ( 3x2 - 2x + 1 ) = 6x4 - 4x3 + 2x2 - 15x3 + 10x2 - 5x

= 6x4 - 19x3 + 12x2 - 5x

d) ( x - 3y ) . ( 2xy + y2 + x ) = 2x2y + xy2 + x2 - 6xy2 - 3y3 - 3xy

Bài 2 :

a) A = x2 + 9y2 - 6xy

=> A = x2 - 2 . x . 3y + ( 3y )2

=> A = ( x - 3y )2

Thay x = 19 và y = 13 vào biểu thức A ta có :

A = ( 19 - 3 . 13 )2

=> A = ( 19 - 39 )2

=> A = ( -20 )2

=> A = 400

b) B = x3 - 6x2y + 12xy2 - 8y3

=> B = ( x - 2y )3

Thay x = 12 và y = -4 vào biểu thức B ta có :

B = [ 12 - 2 . ( -4 ) ]3

=> B = ( 12 + 8 )3

=> B = 203

=> B = 8000

= -3y3 + 2x2y - 5xy2 + x2 - 3xy

2 tháng 11 2017

a)15x^4-21x^3+12x^2

b)2x^3y^3-5x^2y^3+xy^3

c)6x^4-4x^3+2x^2-15x^3+10x^2-5x=6x^4-19x^3+12x^2-5x

3 tháng 9 2018

pạn ơi pạn đã lm đk chưa? nếu lm đk oy cho mk xem cách lm bài 2 nhé. cảm ơn pạn nhìu lắm

12 tháng 7 2017

a)

\(x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0\)

\(\Leftrightarrow\left(x^3+3x^2+3x+1\right)+\left(y^3+3y^2+3y+1\right)+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+1\right)^3+\left(y+1\right)^3+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\right]+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1\right]=0\)

Lại có :\(\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1=\left[\left(x+1\right)-\frac{1}{2}\left(y+1\right)\right]^2+\frac{3}{4}\left(y+1\right)^2+1>0\)

Nên \(x+y+2=0\Rightarrow x+y=-2\)

Ta có :

\(M=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}=\frac{-2}{xy}\)

Vì \(4xy\le\left(x+y\right)^2\Rightarrow4xy\le\left(-2\right)^2\Rightarrow4xy\le4\Rightarrow xy\le1\)

\(\Rightarrow\frac{1}{xy}\ge\frac{1}{1}\Rightarrow\frac{-2}{xy}\le-2\)

hay \(M\le-2\)

Dấu "=" xảy ra khi \(x=y=-1\)

                    Vậy \(Max_M=-2\)khi \(x=y=-1\)

12 tháng 7 2017

c)  ( Mình nghĩ bài này cho x, y, z ko âm thì mới xảy ra dấu "=" để tìm Min chứ cho x ,y ,z dương thì ko biết nữa ^_^  , mình làm bài này với điều kiện x ,y ,z ko âm nhé )

Ta có :

\(\hept{\begin{cases}2x+y+3z=6\\3x+4y-3z=4\end{cases}\Rightarrow2x+y+3z+3x+4y-3z=6+4}\)

\(\Rightarrow5x+5y=10\Rightarrow x+y=2\)

\(\Rightarrow y=2-x\)

Vì \(y=2-x\)nên \(2x+y+3z=6\Leftrightarrow2x+2-x+3z=6\)

\(\Leftrightarrow x+3z=4\Leftrightarrow3z=4-x\)

\(\Leftrightarrow z=\frac{4-x}{3}\)

Thay \(y=2-x\)và \(z=\frac{4-x}{3}\)vào \(P\)ta có :

\(P=2x+3y-4z=2x+3\left(2-x\right)-4.\frac{4-x}{3}\)

\(\Rightarrow P=2x+6-3x-\frac{16}{3}+\frac{4x}{3}\)

\(\Rightarrow P=\frac{x}{3}+\frac{2}{3}\ge\frac{2}{3}\)( Vì \(x\ge0\))

Dấu "=" xảy ra khi \(x=0\Rightarrow\hept{\begin{cases}y=2\\z=\frac{4}{3}\end{cases}}\)( Thỏa mãn điều kiện y , z ko âm )

Vậy \(Min_P=\frac{2}{3}\)khi \(\hept{\begin{cases}x=0\\y=2\\z=\frac{4}{3}\end{cases}}\)