Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 36-y2=8(x-2010)2. => y2=36-8(x-2010)2
+)Nếu y=0 (
\(\Rightarrow y^2=0\Rightarrow36-8\left(x-2010\right)^2=0\Rightarrow8\left(x-2010\right)^2=36\)
\(\Rightarrow\left(x-2010\right)^2=4,5\)ko thỏa mãn vì )
+)Nếu y khác 0
\(\Rightarrow y^2>0\Rightarrow36-8\left(x-2010\right)^2>0\)
\(\Rightarrow8\left(x-2010\right)^2>36\)
\(\Rightarrow\left(x-2010\right)^2>4,5\)
Mà (x-2010)2 là số chính phương \(\Rightarrow\left(x-2010\right)^2\in\left\{0;1;4\right\}\)
Với \(\left(x-2010\right)^2=0\Rightarrow x=2010\Rightarrow36-y^2=8.0\Rightarrow y^2=36\)
\(\Rightarrow y=\sqrt{36}=6\Rightarrow x=2010;y=6\)(thỏa mãn)
Với \(\left(x-2010\right)^2=1\Rightarrow36-y^2=8\Rightarrow y^2=28\) (ko thỏa mãn)
Với \(\left(x-2010\right)^2=4\Rightarrow\)x-2010=2 hoặc x- 2010=-2
\(\Rightarrow\orbr{\begin{cases}x=2012\left(TM\right)\\x=2008\left(TM\right)\end{cases}}\)
\(\Rightarrow36-y^2=8.4=32\Rightarrow y^2=4=2^2\Rightarrow y=2\)(do y thuộc N)
\(\Rightarrow\orbr{\begin{cases}x=2010\\y=6\end{cases};\orbr{\begin{cases}x=2012\\y=4\end{cases};\orbr{\begin{cases}2008\\y=2\end{cases}}}}\)
\(36-y^2=8\left(x-2010\right)^2+y^2=36\)
\(\text{Do: }y^2\ge0\Rightarrow\left(x-2010\right)^2\le\frac{36}{8}\)
Do đó: \(\left(x-2010\right)^2\in\left\{0;1;4\right\}\)
Với \(\left(x-2010\right)^2=0\Rightarrow x=2010\)
\(\Rightarrow y^2=36\text{ nen }y=6\)
Với \(\left(x-2010\right)^2=1\Rightarrow\orbr{\begin{cases}x=2010\\y^2=36-8=28\left(\text{loai}\right)\end{cases}}\)
Với \(\left(x-2010\right)^2=4\Rightarrow\orbr{\begin{cases}x=2012\\y^2=36-32=4\Rightarrow y=2\end{cases}}\)
Các cặp số thỏa mãn yêu cầu đề bài là: (2010; 6), (2010; 2).
Câu 2a đánh thiếu đề rồi : I x+1I + I x+2I + I x+3 I = x
2c)
Ta có: \(25-y^2\le25\Rightarrow8\left(x-2012\right)^2\le25\)
\(\Rightarrow\left(x-2012\right)^2\le3\)
\(\Rightarrow\left[\begin{matrix}\left(x-2012\right)^2=0\\\left(x-2012\right)^2=1\end{matrix}\right.\)
\(\Rightarrow\left[\begin{matrix}x-2012=0\\\left[\begin{matrix}x-2012=1\\x-2012=-1\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[\begin{matrix}x=2012\\\left[\begin{matrix}x=2013\\x=2011\end{matrix}\right.\end{matrix}\right.\)\(\Rightarrow\left[\begin{matrix}y=5\\\left[\begin{matrix}y=\sqrt{17}\\y=\sqrt{17}\end{matrix}\right.\end{matrix}\right.\)(loại)
Vậy x=2012,y=5
\(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)
\(\left(x-7\right)^{x+1}.\left[1-\left(x-7\right)^{10}\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\\left(x-7\right)^{10}=1\end{cases}\Rightarrow\orbr{\begin{cases}x=7\\x-7=\pm1\end{cases}}}\)
vậy x=7, x=8 hay x=6
vì 8(x-2009)^2>=0 suy ra 25-y^2>=0. Mà y^2>=0 suy ra 25-y^2<=25. Suy ra 0<=25-y^2<=25. suy ra 0<=8(x-2009)^2<=25
suy ra 0<=(x-2009)^2<=25/8 (cùng chia cho 8 cả 3 vế)
nên (x-2009)^2=0 ;1
- Nếu (x-2009)^2=0 suy ra x-2009=0 suy ra x=2009
nên 25-y^2=0 suy ra y^2=25 suy ra y=5(t/m)
- Nếu (x=2009)^2=1 suy ra x-2009=1 hoặc x-2009=-1
suy ra: x=2010 hoặc x=2008
nên 25-y^2=8 nhân 1 suy ra y^2=17(loại vì y thuộc N)
Vậy ta tim đc 1 cặp (x;y) là (2009;5)
Nhớ tích đúng cho mình nhé.....! Cảm ơn
Ta có:8(x-2009)^2 chia hết cho 2 suy ra 8(x-2009)^2 là số chẵn mà 25-y^ 2=8(x-2009)^2 suy ra 25-y^2 là số chẵn mà 25 là số lẻ nên y^2 là số lẻ
Mặt khác:8(x-2009)^2>0 nên 25-y^2>0 suy ra y^2 phải bé hơn hoặc bằng. 25 nên y^2 thuộc :1;4;9;16;25 mà theo cm trên thì y^2 lẻ suy ra y^2 thuộc:1;9;25
thay từng trường hợp y rồi tìm x
25 - y2 = 8(x - 2009)2
<=> 8(x - 2009)2 + y2 = 25
Với |x - 2009| = 0 thì => x = 2009
=> y = (-5; 5)
Với |x - 2009| = 1 thì
=> 8(x - 2009)2 = 8
=> y2 = 25 - 8 = 17 (loại)
Với |x - 2009| \(\ge\)2 thì
=> 8(x - 2009)2 \(\ge\)8.4 = 32 (loại)
Vậy x = 2009, y = (-5; 5)
ta có: 25 - y2 = 8(x - 2009)2
=> 8(x - 2009)2 \(\le25\)
=> \(\left(x-2009\right)^2\le\frac{25}{8}\)
mà (x - 2009)2 là số chính phương
=> (x - 2009)2 = { 0;1 }
- nếu (x - 2009)2 = 0 => x - 2009 = 0 => x = 2009
=> 25 - y2 = 0 => y2 = 25 => y = \(\orbr{\begin{cases}5\\-5\end{cases}}\)
- nếu (x - 2009)2 = 1 => \(\orbr{\begin{cases}x-2009=1\\x-2009=-1\end{cases}\Rightarrow\orbr{\begin{cases}x=2010\\x=2008\end{cases}}}\)
=> 25 - y2 = 8 => y2 = 17 ( loại )
vậy ta có cặp số (x;y) là (2009;5) ; (2009;-5) thỏa mãn yêu cầu đề bài
bn nhấn vào đây nhé: Câu hỏi của Kudo shinichi - Toán lớp 7 | Học trực tuyến