K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2016

2xy-3x-y=1

<=>y(2x-1)=3x+1

=>y=(3x+1)/(2x-1)

để y nguyên thì 3x+1 phải chia hết cho 2x-1

11 tháng 6 2016

Mình viết tiếp bài bạn Tuấn.

\(2xy-3x-y=1\Leftrightarrow2xy-y=3x+1\Leftrightarrow\left(2x-1\right)y=3x+1\)vì x nguyên nên 2x-1 khác 0.

\(\Rightarrow y=\frac{3x+1}{2x-1}\)(1)

Để y nguyên thì 2y cũng nguyên, do đó (1) trở thành: \(2y=\frac{6x+2}{2x-1}=\frac{6x-3+5}{2x-1}=3+\frac{5}{2x-1}\)

Để 2y nguyên thì 2x-1 là ước của 5. 

  • 2x-1 = -5 => x=-2 => y = 1
  • 2x-1 = -1=> x=0 => y = -1.
  • 2x-1 = 1 => x=1 => y = 4.
  • 2x-1 = 5 => x = 3 => y = 2.

Vậy có 4 cặp (x;y) TM đề bài là (-2;1); (0;-1); (1;4); (3;2).

10 tháng 8 2023

Ta đặt y = x + k với k \(\inℤ\)

Khi đó 3x2 - y2 - 2xy - 2x - 2y + 40 = 0

<=> 3x2 - (x + k)2  - 2x(x + k) - 2x - 2(x + k) + 40 = 0

<=> k2 + 4xk + 4x + 2k - 40 = 0

<=> (k + 1)2 + 4x(k + 1) = 41

<=> (k + 1)(4x + k + 1) = 41

Ta lập bảng ta được : 

k + 1 1 41 -1 -41
4x + k + 1 41 1 -41 -1
x 10 -10  -10 10
k 0 40 -2 -42

lại có y = x + k

ta được các cặp (x;y) cần tìm là (10;10) ; (-10 ; 30) ; (-10 ; -12) ; (10;-32) 

22 tháng 5 2017

pt ở đề bài <=> x^2-2x(y-2)-(3y-1)=0 (1) 

để pt có nghiệm x nguyên thì delta phải là số chính phương 

xét delta=[2(y-2)]^2+4=a^2 => a^2-(2y-4)^2=4=>(a-2y+4)(a+2y-4)=4 đến đây giải pt ước số rồi tìm y => tìm x 

-nghĩ vậy chả biết có đúng không <(")

8 tháng 2 2019

PT \(\Leftrightarrow\left(3x^2-5x\right)-2xy+\left(y+2\right)=0\)

Xét \(\Delta'=y^2-\left(y+2\right)\ge0\Leftrightarrow y^2-y-2\ge0\)

\(\Leftrightarrow-y^2+y+2\le0\Leftrightarrow\left(y-2\right)\left(y+1\right)\)

\(\Leftrightarrow-1\le y\le2\)

Thế vô làm tiếp :v

23 tháng 11 2023

Ta có: \(4x^2-2xy-2x=y-20\)

\(\Leftrightarrow y+2xy=4x^2-2x+20\)

\(\Leftrightarrow y\cdot\left(2x+1\right)=4x^2-2x+20\)

\(\Leftrightarrow y=\dfrac{4x^2-2x+20}{2x+1}\)

\(\Leftrightarrow y=\dfrac{4x^2+2x-4x+20}{2x+1}\)

\(\Leftrightarrow y=\dfrac{2x\left(2x+1\right)-4x-2+22}{2x+1}\)

\(\Leftrightarrow y=2x+\dfrac{-2\left(2x+1\right)+22}{2x+1}\)

\(\Leftrightarrow y=2x-2+\dfrac{22}{2x+1}\)

Để x,y ∈ Z thì \(\dfrac{22}{2x+1}\) có giá trị nguyên 

\(\Rightarrow2x+1\inƯ\left(22\right)=\left\{1;-1;2;-2;11;-11;22;-22\right\}\)

Mà nếu x nguyên thì \(2x+1\) luôn là số lẻ 

\(\Rightarrow2x+1\in\left\{1;-1;11;-11\right\}\)

\(\Rightarrow x\in\left\{0;-1;5;-6\right\}\)

Ta tìm được các số y tương ứng là:

\(x=0\Rightarrow y=20\)

\(x=-1\Rightarrow y=-26\)

\(x=5\Rightarrow y=10\)

\(x=-6\Rightarrow y=-16\)

Vậy các cặp x,y thỏa là: \(\left(0;20\right);\left(-1;-26\right);\left(5;10\right);\left(-6;-16\right)\)

7 tháng 10 2017

ta có: y^2 +2xy -3x-2=0

    <=> y^2 +2xy+x^2 =x^2 +3x+2

<=> (y+x)^2 =(x+1)(x+2)

vì  (x+1) và (x+2) là 2 số liên tiếp mà tích (x+1)(x+2) là 1 số chính phương nên:  (x+1)=0 hoặc (x+2) =0

+)với x+1=0 => x=-1 =>y=1

+) với x+2=0=>x=-2=>y=2

vậy nghiệm của pt là (x;y)= { (-2;2);(-1;1)}