Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Oái gặp bn trùng tên nè!
a) Để phân số \(\dfrac{a^2+a+3}{a+1}\) là số nguyên thì :
\(a^2+a+3⋮a+1\)
Mà \(a+1⋮a+1\)
\(\Rightarrow\left\{{}\begin{matrix}a^2+a+3⋮a+1\\a^2+a⋮a+1\end{matrix}\right.\)
\(\Rightarrow3⋮a+1\)
Vì \(a\in Z\Rightarrow a+1\in Z;a+1\inƯ\left(3\right)\)
Ta có bảng :
\(a+1\) | \(1\) | \(3\) | \(-1\) | \(-3\) |
\(a\) | \(0\) | \(2\) | \(-2\) | \(-4\) |
\(Đk\) \(a\in Z\) | TM | TM | TM | TM |
Vậy \(a\in\left\{0;2;-2;-4\right\}\) là giá trị cần tìm
b) Ta có :
\(x-2xy+y=0\)
\(\Rightarrow2x-4xy-2y=0\)
\(\Rightarrow\left(2x-4xy\right)+2y-1=0-1\)
\(\Rightarrow\left(2x-4xy\right)-\left(1-2y\right)=-1\)
\(\Rightarrow2x\left(1-2y\right)-\left(1-2y\right)=-1\)
\(\Rightarrow\left(1-2y\right)\left(2x-1\right)=-1\)
Vì \(x,y\in Z\Rightarrow1-2y;2x-1\in Z,1-2y;2x-1\inƯ\left(-1\right)\)
Ta có bảng :
\(x\) | \(2x-1\) | \(1-2y\) | \(y\) | \(Đk\) \(x,y\in Z\) |
\(0\) | \(-1\) | \(1\) | \(0\) | TM |
\(1\) | \(1\) | \(-1\) | \(1\) | TM |
Vậy cặp giá trị \(\left(x,y\right)\) cần tìm là :
\(\left(0,0\right);\left(1,1\right)\)
b) \(x-2xy+y=0\)
\(\Rightarrow x-\left(2xy-y\right)=0\)
\(\Rightarrow x-y\left(2x-1\right)=0\)
\(\Rightarrow2x-2y\left(2x-1\right)=0\)
\(\Rightarrow\left(2x-1\right)-2y\left(2x-1\right)=0-1=-1\)
\(\Rightarrow\left(2x-1\right)\left(1-2y\right)=-1\)
Ta có:
TH1: \(\left\{{}\begin{matrix}2x-1=1\\1-2y=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
TH2:\(\left\{{}\begin{matrix}2x-1=-1\\1-2y=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
Vậy...................
\(A=x^2-2x-y+3y-1\)
\(B=-2x^2+3y^2-5x+y+3\)
a) \(A+B=\left(x^2-2x-y+3y-1\right)+\left(-2x^2+3y^2-5x+y+3\right)\)
\(=x^2-2x-y+3y-1-2x^2+3y^2-5x+y+3\)
\(=\left(x^2-2x^2\right)+3y^2+\left(-2x-5x\right)+\left(-y+3y+y\right)+3-1\)
\(=-x^2+3y^2-7x+3y+2\)
\(A-B=\left(x^2-2x-y+3y-1\right)-\left(-2x^2+3y^2-5x+y+3\right)\)
\(=x^2-2x-y+3y-1+2x^2-3y^2+5x-y-3\)
\(=\left(x^2+2x^2\right)-3y^2+\left(-2x+5x\right)+\left(-y+3y-y\right)-1-3\)
\(=3x^2-3y+3x+y-4\)
b) tại x=1 ; x=-2 ta có:
\(A=1^2-2.1-\left(-2\right)+3.\left(-2\right)-1\)
\(A=1-2+2-6-1=-6\)
Vậy -6 là giá trị của đa thức A tại x=1 y=-2
a) \(A+B=\left(x^2-2x-y+3y-1\right)+\left(-2x^2+3y^2-5x+y+3\right)\)
\(=-x^2+3y^2-7x+3y+2\)
\(A-B=\left(x^2-2x-y+3y-1\right)-\left(-2x^2+3y^2-5x+y+3\right)\)
\(=3x^2-3y^2+3x+2y-4\)
b) \(A\left(1;-2\right)=1^2-2\cdot1-\left(-2\right)+3\cdot\left(-2\right)-1\)
\(=1-2+2-6-1\)
\(=-6\)
a)3/4+1/1/4*2/2/3-(-1/2)^2:6/5
=3/4+5/4*8/3-1/4:6/5
=3/4+10/3-5/24=18/24+80/24-5/24=93/24=31/8
b)(x-1)^5=32=2^5
=>x-1=2
x=2+1
x=3