Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\begin{cases}\sqrt{xy}+\frac{1}{\sqrt{xy}}=\frac{5}{2}\\\sqrt{x}+\sqrt{y}+\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}=\frac{9}{2}\end{cases}\)
<=>\(\begin{cases}xy+1=\frac{5\sqrt{xy}}{2}\\\sqrt{xy}.\left(\sqrt{x}+\sqrt{y}\right)+\sqrt{x}+\sqrt{y}=\frac{9\sqrt{xy}}{2}\end{cases}\)
Đặt P=\(\sqrt{xy}\);S=\(\sqrt{x}+\sqrt{y}\)(S2\(\ge\)4P)
Ta có HPT: \(\begin{cases}P^2+1=\frac{5P}{2}\\S.P+P=\frac{9P}{2}\end{cases}\)
Tới đây dễ tự làm
Ta có:
1-z/x=x/x-z/x=(x-z)/x(1)
1-x/y=y/y-x/y=(y-x)/y(2)
1+y/z=z/z+y/z=(y+z)/z(3)
Mà x-y-z=0( theo đề)
=>x-z=y(*)
x-y=z=>y-x=-z ( số đối) (**)
y+z=x(***)
Thay (*),(**),(***) lần lượt vào (1),(2),(3) ta đc:
A=(1-z/x)(1-x/y)(1+y/z)=(x-z)/x.(y-x)/y.(z+y)/z=y/x.(-z/y).x/z
=y.(-z).x/x.y.z=y.z.(-1).x/x.y.z=-1
Vậy A=-1
Theo hệ quả của bất đẳng thức Cauchy - Schwarz
\(\Rightarrow x^2+y^2+z^2\ge xy+yz+xz\)
Mà \(x^2+y^2+z^2\le3\)
\(\Rightarrow xy+yz+xz\le3\)
Ta có \(P=\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+xz}\)
Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức
\(\Rightarrow P\ge\dfrac{\left(1+1+1\right)^2}{xy+1+yz+1+xz+1}=\dfrac{9}{xy+yz+xz+3}\) (1)
Ta có \(xy+yz+xz\le3\)
\(\Rightarrow xy+yz+xz+3\le6\)
\(\Rightarrow\dfrac{9}{xy+yz+xz+3}\ge\dfrac{9}{6}=\dfrac{3}{2}\) (2)
Từ (1) và (2)
\(\Rightarrow P\ge\dfrac{3}{2}\)
Vậy \(P_{min}=\dfrac{3}{2}\)
Dấu " = " xảy ra khi \(x=y=z=1\)
Dễ mà bn:
\(\frac{x}{y}=4=>x=4y\)
Ta có: xy=9
<=>(4y).y=9
<=>4y2=9
<=>\(y^2=\frac{9}{4}=\frac{3^2}{2^2}=\left(\frac{3}{2}\right)^2=\left(-\frac{3}{2}\right)^2\)
Do đó \(y=\frac{3}{2}\) hoặc \(y=-\frac{3}{2}\)
+)y=3/2 thì x=6 (TM)
+)y=-3/2 thì x=-6 (loại)
Vậy (x;y)=(6;3/2)
Ta có x > = 0
Xét TH1 : x > 0
Ta có Ư(9) = { -1;-3;-9;1;3;9}
Vì x > 0 → ta loại bỏ -1;-3;-9
Nếu x = 9 → y = 9/4 mà 9 . 9/4 > 9 (loại)
Nếu x = 3 → y = 3/4 mà 3 . 3/4 < 9 (loại)
Nếu x = 1 → y = 1/3 mà 1 . 1/3 < 9 (loại)
Xét TH2 : x = 0
Nếu x = 0 → y = 0 mà 0 . 0 < 9 (loại)
Vậy số cặp thoã mãn x/y = 4; xy = 9 (x > = 0) là 0
Chỉ dữ kiện như vậy thì không đủ để tìm x,y , vì có rất nhiều giá trị thỏa mãn.
Theo t/c dãy tỉ số=nhau:
\(\frac{x^3+y^3}{6}=\frac{x^3-2y^3}{4}=\frac{2x^3+2y^3}{12}=\frac{2x^3+2y^3+x^3-2y^3}{12+4}=\frac{3x^3}{16}\) (hơi tắt tí)
và \(\frac{x^3+y^3}{6}=\frac{x^3-2y^3}{4}=\frac{x^3+y^3-\left(x^3-2y^3\right)^{ }}{6-4}=\frac{3y^3}{2}\)
Do đó \(\frac{3x^3}{16}=\frac{3y^3}{4}=>\frac{x^3}{8}=y^3=>\frac{x^6}{64}=y^6\)
\(=>\left(\frac{x^6}{64}\right).y^6=y^6.y^6=>\frac{x^6.y^6}{64}=y^{12}=\frac{64}{64}=1\)
=>y=1 hoặc y=-1
x=2 hoặc x=-2
Vậy....................
bạn ơi cho mik hs tại s ở trên là 3y^3/2 mak s ở dưới là 3x^3/16 = 3y^3/4 ?
a) Theo đề bài, ta có :
\(\frac{5}{x}-\frac{y}{3}=\frac{1}{6}\) => \(\frac{5}{x}=\frac{1+2y}{6}\)
2y+1 | 1 | -1 | 3 | -3 | 5 | -5 | 15 | -15 |
2y | 0 | -2 | 2 | -4 | 4 | -6 | 14 | -16 |
y | 0 | -1 | 1 | -2 | 2 | -3 | 7 | -8 |
x | 30 | -30 | 10 | -10 | 6 | -6 | 2 | -2 |
b) \(\frac{2}{y}-\frac{x}{6}=\frac{1}{30}\) => \(\frac{2}{y}=\frac{5x-1}{30}\)
5x-1 | -1 | 4 | -6 |
5x | 0 | 5 | -5 |
x | 0 | 1 | -1 |
y | -60 | 15 | -10 |
từ (x-y)/3=(x+y)/13 bạn nhân chéo rồi rút gọn ta đk 5x - 8y =0 =>x=(8y)/5
từ (x-y)/3=xy/200 =>200(x-y)=3xy
bạn thế x=(8y)/5 vào rùi giải pt bậc hai sẻ tìm đk x sau đó suy ra y. còn lại thì tự làm
Toán lớp 7 phương trình bậc 2 cái gì ?