Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dự đoán \(M\) đạt min tại mỗi biến bằng \(\frac{2}{3}\).
Nên ta viết lại \(M=\left(x+\frac{4}{9x}\right)+\left(y+\frac{4}{9y}\right)+\frac{5}{9}\left(\frac{1}{x}+\frac{1}{y}\right)\)
Áp dụng BĐT AM-GM cho hai lượng đầu và BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) ta có:
\(M\ge\frac{4}{3}+\frac{4}{3}+\frac{5}{9}.\frac{4}{x+y}\ge\frac{4}{3}+\frac{4}{3}+\frac{5}{9}.\frac{4}{\frac{4}{3}}=\frac{13}{3}\)
\(E= {\sum {(yz)^2 \over xy+zx}}\)>=3/2 (AD BĐT Nesbit)
Dấu = xảy ra <=>x=y=z=1
đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\Rightarrow abc=\frac{1}{xyz}=1\)
Ta có : \(x+y=\frac{1}{a}+\frac{1}{b}=\frac{a+b}{ab}=c\left(a+b\right)\)
Tương tự : \(y+z=a\left(b+c\right);x+z=b\left(c+a\right)\)
\(\Rightarrow E=\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\ge\frac{3\sqrt[3]{abc}}{2}=\frac{3}{2}\)
\(\Rightarrow E\ge\frac{3}{2}\)
Vậy GTNN của E là \(\frac{3}{2}\Leftrightarrow x=y=z=1\)
Ta có xy=2 => \(y=\frac{2}{x}\)
ta có : M = \(\frac{1}{x}+\frac{2}{y}+\frac{3}{2x+y}=\frac{1}{x}+x+\frac{3}{2x+\frac{2}{x}}+\frac{2}{\frac{2}{x}}-x\)= \(\left(x+\frac{1}{x}\right)+\frac{3}{2\left(\frac{1}{x}+x\right)}\)
Áp dụng BĐT AM - GM ta được :
M \(\ge2\sqrt{\frac{\left(\frac{1}{x}+x\right)3}{\left(\frac{1}{x}+x\right)2}}=2\sqrt{\frac{3}{2}}=\sqrt{6}\)
Dấu "="......
Vậy Min M = \(\sqrt{6}\) Khi ......
============
bấm đi bấm lại 2 lần , máy lỗi , phần tìm x,y bạn tự làm nhé
=========================
\(\frac{x+1}{1+y^2}=\frac{\left(x+1\right)\left(1+y^2\right)-y^2\left(x+1\right)}{1+y^2}=x+1-\frac{y^2\left(x+1\right)}{1+y^2}\)
TT...
\(\Rightarrow Q=x+y+z+3-\frac{y^2\left(x+1\right)}{1+y^2}-\frac{z^2\left(y+1\right)}{1+z^2}-\frac{x^2\left(1+z\right)}{1+x^2}\)
\(\ge6-\frac{y^2\left(x+1\right)}{2y}-\frac{z^2\left(y+1\right)}{2z}-\frac{x^2\left(z+1\right)}{2x}=6-\frac{xy+yz+xz+x+y+z}{2}\)
\(=6-\frac{3+xy+yz+xz}{2}\ge6-\frac{3+\frac{\left(x+y+z\right)^2}{3}}{2}=6-\frac{3+\frac{3^2}{3}}{2}=3\)
Vậy GTNN của Q là 3 khi x = y = z = 1
ÁP dụng BĐT AM-GM: \(\sqrt{1+x^3}=\sqrt{\left(1+x\right)\left(1-x+x^2\right)}\le\frac{1}{2}\left(2+x^2\right)\)
thiết lập tương tự và cộng theo vế :\(P\ge\frac{1}{\frac{1}{2}\left(2+x^2\right)}+\frac{1}{\frac{1}{2}\left(2+y^2\right)}=2\left(\frac{1}{x^2+2}+\frac{1}{y^2+2}\right)\)
Áp dụng BĐT cauchy-schwarz:(bunyakovsky dạng phân thức)
\(VT=2\left(\frac{1}{x^2+2}+\frac{1}{y^2+2}\right)\ge\frac{8}{x^2+y^2+4}=\frac{8}{12}=\frac{2}{3}\)
Dấu ''=''xảy ra khi x=y=2
\(\frac{a}{\sqrt{b+c-a}}=\frac{a^2}{\sqrt{a}\sqrt{a}\sqrt{b+c-a}}>\frac{a^2}{\sqrt{\frac{\left(b+c-a+2a\right)^3}{27}}}=\frac{a^2}{\sqrt{\left(a+b+c\right)^3}}\)
Câu 1:
\(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)=x^2y^2+\frac{1}{x^2y^2}+2=x^2y^2+\frac{1}{256x^2y^2}+\frac{255}{256x^2y^2}+2\)
\(\ge\frac{1}{8}+2+\frac{255}{256x^2y^2}\)
Ta lại có: \(1=x+y\ge2\sqrt{xy}\Leftrightarrow1\ge16x^2y^2\)
\(\Rightarrow M\ge\frac{17}{8}+\frac{255}{16}=\frac{289}{16}\)
Dấu = xảy ra khi x=y=1/2
Áp dụng BDT Cauchy-Schwarz: \(\frac{1}{16}\left(\frac{1}{x+y}+\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}\right)\ge\frac{1}{3x+3y+2z}\)
CMTT rồi cộng vế với vế ta có.\(VT\le\frac{1}{16}\cdot4\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)=\frac{3}{2}\)
Dấu = xảy ra khi x=y=z=1
Ta có
\(\frac{1}{x}+\frac{4}{y}\ge\frac{\left(1+2\right)^2}{x+y}=\frac{9}{3}=3\)
\(\Rightarrow3\le\frac{1}{x}+\frac{4}{y}\le3\)
\(\Rightarrow\hept{\begin{cases}x+y=3\\\frac{1}{x}+\frac{4}{y}=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3-y\left(1\right)\\\frac{1}{3-y}+\frac{4}{y}=3\left(2\right)\end{cases}}\)
\(\hept{\begin{cases}x=3-y\\y^2-4y+4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}}\)
x,y nguyên dương hay x,y dương. Vì x,y dương thì tìm được nhiều lắm