Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(9x^2+8y^2-12xy+6x-16y+10=0\)
\(\Rightarrow9x^2+8y^2-12xy+6x-16y=-10\)
\(=9x^2+2\left(4y^2-6xy+3x-8y\right)=-10\)
\(=9x^2+2\left[3x-6xy+4y\left(y-2\right)\right]\)
\(=9x^2+2\left[3x\left(1-2y\right)+4y\left(y-2\right)\right]\)
\(\Rightarrow\left\{{}\begin{matrix}9x^2=0\\\left\{{}\begin{matrix}1-2y=0\\y-2=0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\\left\{{}\begin{matrix}y=\dfrac{1}{2}\\y=2\end{matrix}\right.\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=0\\\left\{{}\begin{matrix}y=\dfrac{1}{2}\\y=2\end{matrix}\right.\end{matrix}\right.\)
\(9x^2+4y^2+26+4y=30x\)
\(\Leftrightarrow9x^2-30x+4y^2+4y+26=0\)
\(\Leftrightarrow\left(9x^2-30x+25\right)+\left(4y^2+4y+1\right)=0\)
\(\Leftrightarrow\left(3x-5\right)^2+\left(2y+1\right)^2=0\)
Mà: \(\left\{{}\begin{matrix}\left(3x-5\right)^2\ge0\forall x\\\left(2y+1\right)^2\ge0\forall x\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x-5=0\\2y+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x=5\\2y=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=-\dfrac{1}{2}\end{matrix}\right.\)
a) = (3x)^2 + 2.3x.5+ 5^2 = (3x+5)^2
b) = (2/3x)^2-(4y)^2=(2/3x-4y)(2/3x+4y)
c) = -(9x^4-12/5x^2y^2+4/25y^4) = -[(3x^2)^2 - 2.3x^2.2/5y^2 + (2/5y^2)^2]= -(3x^2-2/5y^2)^2
d) = (x-5)^2 - 4^2= (x-5+4)(x-5-4) = (x-1)(x-9)
e) = (2x)^3 + 3.(2x)^2.(5y) + 3.(2x).(5y)^2 + (5y)^3 = (2x+5y)^3
f) = (8x)^2 - (8a+b)^2 = (8x-8a-b)(8x+8a+b)
g) = (7x-4-2x-1)(7x-4+2x+1) = (5x-5)(9x-3) = 5(x-1).3(x-3)=15(x-1)(x-3)
h) = (x-y)(x+y)- 2(x+y) = (x+y)(x-y-2)
# Chúc bạn học tốt #
1. Ta có:
\(x^3-9x^2+27x-26=x^3-2x^2-7x^2+14x+13x-26\)
\(=x^2\left(x-2\right)-7x\left(x-2\right)+13\left(x-2\right)=\left(x-2\right)\left(x^2-7x+13\right)\)
Thay x = 23, ta có: \(C=\left(23-2\right)\left(23^2-7.23+13\right)=8001\)
2.
a) \(x^2+4y^2+6x-12y+18=0\)
\(\Leftrightarrow\left(x^2-6x+9\right)+\left(4y^2-12y+9\right)=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(2y-3\right)^2=0\)
Mà \(\left(x-3\right)^2\ge0\) với mọi x, \(\left(2y-3\right)^2\ge0\) với mọi y
\(\Rightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)và \(\left(2y-3\right)^2=0\Leftrightarrow2y-3=0\Leftrightarrow y=\frac{3}{2}\)
Vậy \(\left(x,y\right)=\left(3;\frac{3}{2}\right)\)
b) \(2x^2+2y^2+2xy-10x-8y+41=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2-10x+25\right)+\left(y^2-8y+16\right)=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(x-5\right)^2+\left(y-4\right)^2=0\)
.....................................
Rồi giải tương tự như trên
\(9x^2-2.3x.5+25+16y^2+8y+1=0\)
\(\Leftrightarrow\left(3x-5\right)^2+\left(8y+1\right)^2=0\)
mà \(\left(3x-5\right)^2+\left(8y+1\right)^2\ge0\)
Dấu ''='' xảy ra khi x = 5/3 ; y = -1/8