Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình giải cho bạn ở http://olm.vn/hoi-dap/question/104690.html rồi nha
a) \(\left(y-1\right)^2=9\)
\(\Rightarrow\left(y-1\right)^2=3^2=\left(-3\right)^2\)
\(\Rightarrow x-1=3\Rightarrow x=4\)
\(\Rightarrow x-1=-3\Rightarrow x=-2\)
Vậy: \(x=4\) hoặc \(-2\)
a) 4x2 - 5xy + y2 = 4x2 - 4xy - xy + y2 = 4x( x - y ) - y( x - y ) = ( x - y )( 4x - y )
b) x2 - 4xy + 3y2 = x2 - xy - 3xy + 3y2 = x( x - y ) - 3y( x - y ) = ( x - y )( x - 3y )
c) 9x2 + 6xy - 8y2 = 9x2 - 6xy + 12xy - 8y2 = 9x( x - 2/3y ) + 12y( x - 2/3y ) = ( x - 2/3y )( 9x + 12y )
d) 2x2 + 3xy - 5y2 = 2x2 - 2xy + 5xy - 5y2 = 2x( x - y ) + 5y( x - y ) = ( x - y )( 2x + 5y )
e) x2 - 35y2 - 2xy = x2 + 5xy - 7xy - 35y2 = x( x + 5y ) - 7y( x + 5y ) = ( x + 5y )( x - 7y )
f) 2x2 + 10xy + 8y2 = 2( x2 + 5xy + 4y2 ) = 2( x2 + xy + 4xy + 4y2 ) = 2[ x( x + y ) + 4y( x + y ) ] = 2( x + y )( x + 4y )
g) x2 - 10xy + 16y2 = x2 - 2xy - 8xy + 16y2 = x( x - 2y ) - 8y( x - 2y ) = ( x - 2y )( x - 8y )
h) 4x2 + 4xy - 15y2 = 4x2 - 6xy + 10xy - 15y2 = 4x( x - 3/2y ) + 10y( x - 2/3y ) = ( x - 2/3y )( 4x + 10y )
i) -7xy + 3x2 + 2y2 = 3x2 - xy - 6xy + 2y2 = 3x( x - 1/3y ) - 6y( x - 1/3y ) = ( x - 1/3y )( 3x - 6y )
j) 56y2 + 4x2 - 36xy = 4( x2 - 9xy + 14y2 ) = 4( x2 - 2xy - 7xy + 14y2 ) = 4[ x( x - 2y ) - 7y( x - 2y ) ] = 4( x - 2y )( x - 7y )
Bn ko phải tk cho mk đừng k nhé
Ta có:\(10x-26-4x^2=-\left(4x^2-10x+26\right)\)
\(=-\left[\left(2x\right)^2-10x+\left(\frac{5}{2}\right)^2+\frac{79}{4}\right]\)
\(=-\frac{79}{4}-\left(2x-\frac{5}{2}\right)^2\le-\frac{79}{4}\)
Vậy 10x-26-4x2 < 0 với mọi x
a)
\(3x^2+12x-66=0\)
\(\Leftrightarrow x^2+4x-22=0\)
\(\Leftrightarrow x^2+4x+4=26\Leftrightarrow (x+2)^2=26\)
\(\Rightarrow x+2=\pm \sqrt{26}\Rightarrow x=-2\pm \sqrt{26}\)
b)
\(9x^2-30x+225=0\)
\(\Leftrightarrow (3x)^2-2.3x.5+25+200=0\)
\(\Leftrightarrow (3x-5)^2=-200< 0\) (vô lý nên pt vô nghiệm)
c)
\(x^2+3x-10=0\)
\(\Leftrightarrow x^2-2x+5x-10=0\)
\(\Leftrightarrow x(x-2)+5(x-2)=0\Leftrightarrow (x+5)(x-2)=0\)
\(\Rightarrow x=-5\) hoặc $x=2$
d)
$3x^2-7x+1=0$
$\Leftrightarrow 3(x^2-\frac{7}{3}x)+1=0$
$\Leftrightarrow 3(x^2-\frac{7}{3}x+\frac{7^2}{6^2})=\frac{37}{12}$
$\Leftrightarrow 3(x-\frac{7}{6})^2=\frac{37}{12}$
$\Leftrightarrow (x-\frac{7}{6})^2=\frac{37}{36}$
$\Rightarrow x-\frac{7}{6}=\frac{\pm \sqrt{37}}{6}$
$\Rightarrow x=\frac{7\pm \sqrt{37}}{6}$
e)
$3x^2+7x+2=0$
$\Leftrightarrow 3(x^2+\frac{7}{3}x+\frac{7^2}{6^2})=\frac{25}{12}$
$\Leftrightarrow 3(x+\frac{7}{6})^2=\frac{25}{12}$
$\Leftrightarrow (x+\frac{7}{6})^2=\frac{25}{36}$
$\Rightarrow x+\frac{7}{6}=\pm \frac{5}{6}$
$\Rightarrow x=\frac{-1}{3}$ hoặc $x=-2$
a) \(A=9x^2-6x+3\)
\(A=\left(3x\right)^2-2.3x+1+2\)
\(A=\left(3x-1\right)^2+2\)
Vì \(\left(3x-1\right)^2\ge0\) với mọi x
\(\Rightarrow\left(3x-1\right)^2+2\ge2\) với mọi x
\(\Rightarrow Amin=2\Leftrightarrow3x-1=0\)
\(\Rightarrow3x=1\)
\(\Rightarrow x=\dfrac{1}{3}\)
Vậy giá trị nhỏ nhất của biểu thức là 2 khi x = 1/3
b) \(B=x^2-3x\)
\(B=x^2-2.x.\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{9}{4}\)
\(B=\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{4}\)
Vì \(\left(x-\dfrac{3}{2}\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{4}\ge-\dfrac{9}{4}\) với mọi x
\(\Rightarrow Bmin=-\dfrac{9}{4}\Leftrightarrow x-\dfrac{3}{2}=0\)
\(\Rightarrow x=\dfrac{3}{2}\)
Vậy giá trị nhỏ nhất của biểu thức là -9/4 khi x = 3/2
c) \(C=x^2+8x+10\)
\(C=x^2+2.x.4+16-6\)
\(C=\left(x+4\right)^2-6\)
Vì \(\left(x+4\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x+4\right)^2-6\ge-6\) với mọi x
\(\Rightarrow Cmin=-6\Leftrightarrow x+4=0\)
\(\Rightarrow x=-4\)
Vậy giá trị nhỏ nhất của biểu thức là -6 khi x = -4
d) \(D=x^2-2x+15+y^2+3y\)
\(D=x^2-2x+1+y^2+2.y.\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{9}{4}+14\)
\(D=\left(x-1\right)^2+\left(y+\dfrac{3}{2}\right)^2+\dfrac{47}{4}\)
Vì \(\left(x-1\right)^2\ge0\) với mọi x
\(\left(y+\dfrac{3}{2}\right)^2\ge0\) với mọi y
\(\Rightarrow\left(x-1\right)^2+\left(y+\dfrac{3}{2}\right)^2\ge0\) với mọi x,y
\(\Rightarrow\left(x-1\right)^2+\left(y+\dfrac{3}{2}\right)^2+\dfrac{47}{4}\ge\dfrac{47}{4}\) với mọi x,y
\(\Rightarrow Dmin=\dfrac{47}{4}\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+\dfrac{3}{2}=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-\dfrac{3}{2}\end{matrix}\right.\)
Vậy giá trị của biểu thức là 47/4 khi x = 1 và y = -3/2
e) \(E=2x^2+4xy+8x+5y^2-4y-100\)
\(E=\left(x^2+4xy+4y^2\right)+\left(x^2+8x+16\right)+\left(y^2-4y+4\right)-120\)
\(E=\left(x+2y\right)^2+\left(x+4\right)^2+\left(y-2\right)^2-120\)
Vì \(\left(x+2y\right)^2\ge0\) với mọi x,y
\(\left(x+4\right)^2\ge0\) với mọi x
\(\left(y-2\right)^2\ge0\) với mọi y
\(\Rightarrow\left(x+2y\right)^2+\left(x+4\right)^2+\left(y-2\right)^2\ge0\) với mọi x,y
\(\Rightarrow\left(x+2y\right)^2+\left(x+4\right)^2+\left(y-2\right)^2-120\ge-120\) với mọi x,y
\(\Rightarrow Emin=-120\Leftrightarrow\left\{{}\begin{matrix}x+2y=0\\x+4=0\\y-2=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=-4\\y=2\end{matrix}\right.\)
Vậy giá trị nhỏ nhất của biểu thức là -120 khi x = -4 ; y = 2
f) \(F=x^2-6xy+26+10y^2-10y\)
\(F=x^2-6xy+9y^2+y^2-10y+25+1\)
\(F=\left(x^2-6xy+9y^2\right)+\left(y^2-10y+25\right)+1\)
\(F=\left(x-3y\right)^2+\left(y-5\right)^2+1\)
Vì \(\left(x-3y\right)^2\ge0\) với mọi x,y
\(\left(y-5\right)^2\ge0\) với mọi y
\(\Rightarrow\left(x-3y\right)^2+\left(y-5\right)^2\ge0\) với mọi x,y
\(\Rightarrow\left(x-3y\right)^2+\left(y-5\right)^2+1\ge1\) với mọi x,y
\(\Rightarrow Fmin=1\Leftrightarrow\left\{{}\begin{matrix}x-3y=0\\y-5=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=3y\Rightarrow x=15\\y=5\end{matrix}\right.\)
Vậy giá trị của biểu thức là 1 khi x = 15 và y = 5
\(144x^2-120x+26=\left(144x^2-120x+25\right)+1=\left(12x-5\right)^2+1\ge0+1=1\Rightarrowđpcm\)
\(b,E=\left(9x^2-30x+25\right)+\left(16y^2+8y+1\right)=\left(3x-5\right)^2+\left(4y+1\right)^2\ge0\left(đpcm\right)\)