Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
a) Đặt \(\frac{x}{10}=\frac{y}{6}=k\)
\(\Rightarrow x=10k,y=6k\)
Mà \(xy=60\)
\(\Rightarrow10k6k=60\)
\(\Rightarrow60k^2=60\)
\(\Rightarrow k^2=1\)
\(\Rightarrow k=\pm1\)
+) \(k=1\Rightarrow x=10;y=6\)
+) \(k=-1\Rightarrow x=-10;y=-6\)
Vậy cặp số \(\left(x;y\right)\) là \(\left(10;6\right);\left(-10;-6\right)\)
b) Hình như đề sai !!!
c) Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
+) \(\frac{x^2}{9}=4\Rightarrow x^2=36\Rightarrow x=\pm6\)
+) \(\frac{y^2}{16}=4\Rightarrow y^2=64\Rightarrow y=\pm8\)
( x, y cùng dấu )
Vậy cặp số ( x; y ) là ( 6; 8 ) ; ( -6; -8 )
a) ta có -3x+5y=33
=> 5y=33+3x
=> y=(33+3x)/5
thay y=(33+3x)/5 vào x/y=3/4 ta đc
x/y=3/4
x/(33+3x)/5=3/4
5x/(33+3x)=3/4
x=9
thay x=9 vào x/y=3/4 ta đc
x/y=3/4
9/y=3/4
y=12
Ta có:\(\frac{x}{y}=\frac{3}{4}\Leftrightarrow\frac{x}{3}=\frac{y}{4}=\frac{-3x}{-9}=\frac{5y}{20}=\frac{-3x+5y}{-9+20}=\frac{33}{11}=3\)
(Áp dụng tính chất dãy tỉ số bằng nhau)
\(\Rightarrow\hept{\begin{cases}x=3\cdot3=9\\y=3\cdot4=12\end{cases}}\)
Ta co:
\(\frac{x}{y}=\frac{17}{3}\Rightarrow\frac{x}{3}=\frac{y}{17}=\frac{x+y}{3+17}=3\)
\(\frac{x}{3}=3\Rightarrow x=9\)
\(\frac{y}{17}=3\Rightarrow y=51\)
b)Ta co:
\(\frac{x}{19}=\frac{y}{21}\Rightarrow\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=2\)
\(\frac{2x}{38}=2\Rightarrow x=38\)
\(\frac{y}{21}=2\Rightarrow y=42\)
Ta co:
\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=4\)
\(\frac{x^2}{9}=4\Rightarrow x^2=36\Rightarrow x=6\)
\(\frac{y^2}{16}=4\Rightarrow y^2=64\Rightarrow y=8\)
g)\(3x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{3}\)
\(7y=5z\Leftrightarrow\frac{y}{5}=\frac{z}{7}\)
\(\frac{x}{10}=\frac{y}{15};\frac{y}{15}=\frac{z}{21}\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=2\)
\(\frac{x}{10}=2\Rightarrow x=20;\frac{y}{15}=2\Rightarrow y=30;\frac{z}{21}=2\Rightarrow z=42\)
a, Ta có : \(\frac{x}{y}=\frac{3}{4}\Rightarrow\frac{x}{3}=\frac{y}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{4}=\frac{-3x+5y}{-9+20}=\frac{33}{11}=3\Rightarrow x=9;y=12\)
b, Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{81+256}=\frac{100}{337}\)
\(x=\frac{30\sqrt{337}}{337};y=\frac{40\sqrt{337}}{337}\)
sửa phần b nhé
b, Áp dụng tính châ dãy tỉ số bằng nhau
\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\Rightarrow x=6;y=8\)