Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.Ta có:\(2x^2-4xy+4y^2+2x+1=0\)
\(\Rightarrow\left[x^2-2x\left(2y\right)+\left(2y\right)^2\right]+\left(x^2+2x+1\right)=0\)
\(\Rightarrow\left(x-2y\right)^2+\left(x+1\right)^2=0\)
Dấu "=" xảy ra khi và chỉ khi x-2y=0 và x+1=0
Suy ra x=-1;y=-1/2
b.Ta có:\(x^2-6x+y^2-6y+21=3\)
\(\Rightarrow\left(x^2-6x+9\right)+\left(y^2-6y+9\right)+3-3=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(y-3\right)^2=0\)
Dấu "=" xảy ra khi và chỉ khi x-3=y-3=0
Suy ra x=y=3
c.Ta có:\(2x^2-8x+y^2-2xy+16=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-8x+16\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x-4\right)^2=0\)
Dấu "=" xảy ra khi và chỉ khi:x-y=x-4=0
Suy ra x=y=4
a) 2x2 - 4xy + 4y2 + 2x + 1 = 0
<=> x2 - 4xy + 4y2 + x2 + 2x + 1 = 0
<=> ( x - 2y )2 + ( x + 1 )2 = 0
<=> \(\hept{\begin{cases}x-2y=0\\x+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=-\frac{1}{2}\end{cases}}\)
b) x2 - 6x + y2 - 6y + 21 = 3
<=> x2 - 6x + y2 - 6y + 21 - 3 = 0
<=> x2 - 6x + y2 - 6y + 18 = 0
<=> x2 - 6x + 9 + y2 - 6y + 9 = 0
<=> ( x - 3 )2 + ( y - 3 )2 = 0
<=> \(\hept{\begin{cases}x-3=0\\y-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=3\end{cases}}\)
c) 2x2 - 8x + y2 - 2xy + 16 = 0
<=> x2 - 2xy + y2 + x2 - 8x + 16 = 0
<=> ( x - y )2 + ( x - 4 )2 = 0
<=> \(\hept{\begin{cases}x-y=0\\x-4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=4\end{cases}}\)
1. x2-4xy + 5y2 = 100\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+y^2=100\)
\(\Leftrightarrow\left(x-2y\right)^2+y^2=0+10^2=6^2+8^2\)\(\Leftrightarrow\int^{x-2y=0}_{y=10}\)
hoặc \(\int^{x-2y=10}_{y=0}\) hoặc \(\int^{x-2y=6}_{y=8}\) hoặc \(\int^{x-2y=8}_{y=6}\)
từ đó ta tìm được (x;y)= ( 20;10);(10;0) ; ( 24;6) ; ( 20; 6)
2. 4x2 + 2y2 - 4xy + 20x - 6y + 29 = 0 \(\Leftrightarrow4x^2-4x\left(y-5\right)+\left(y^2-10y+25\right)+\left(y^2+4y+4\right)=0\)
\(\Leftrightarrow4x^2-4x\left(y-5\right)+\left(y-5\right)^2+\left(y+2\right)^2=0\)
\(\Leftrightarrow\left(2x-y+5\right)^2+\left(y+2\right)^2=0\)
\(\Leftrightarrow\int^{2x-y+5=0}_{y+2=0}\Leftrightarrow\int^{x=\frac{-7}{2}}_{y=-2}\) loại vì x, y nguyên
vậy phương trình đã cho không có nghiệm nguyên
+) A=\(x^2-4xy+5y^2+6y-7=\left(x^2-2.x.2y+4y^2\right)+\left(y^2-2.3y+9\right)-16\)
=\(\left(x-2y\right)^2+\left(y-3\right)^2-16\)
ta có : \(\left(x-2y\right)^2\ge0\) với mọi x,y
\(\left(y-3\right)^2\ge0\) với mọi x,y
=> \(\left(x-2y\right)^2+\left(y-3\right)^2\ge0\)
=> \(\left(x-2y\right)^2+\left(y-3\right)^2-16\ge-16\)
=> \(A\ge-16\)
=> MinA=-16 khi \(\begin{cases}x=2y\\y=3\end{cases}\)<=> x=6 và y=3
9x2 + y2 + 2z2 - 18x + 4z - 6y + 20 = 0
<=>9x2-18x+9+y2-6y+9+2z2+4z+2=0
<=>(3x-3)2+(y-3)2+2(z2+2z+1)=0
<=>(3x-3)2+(y-3)2+2(z+1)2=0
=>3x-3=0 và y-3=0 và z+1=0
<=>x=1 và y=3 và z=-1
\(9x^2+y^2+2z^2-18x+4z-6y+20=0\)
\(\Leftrightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)+2\left(z^2+2z+1\right)=0\)
\(\Leftrightarrow\left(3x-3\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\)
Suy ra hoặc \(3x-3=0\Leftrightarrow x=1\)
hoặc \(y-3=0\Leftrightarrow y=3\)
hoặc \(z+1=0\Leftrightarrow z=-1\)
Answer:
3.
\(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)
\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)
\(\Rightarrow4S^2+28S+4y^2+40=0\)
\(\Rightarrow4S^2+28S+49+4y^2-9=0\)
\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)
\(\Rightarrow-3\le2S+7\le3\)
\(\Rightarrow-10\le2S\le-4\)
\(\Rightarrow-5\le S\le-2\left(2\right)\)
Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)
Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)
Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)
Ta có:
\(7x^2+y^2+4xy-24x-6y+21=0\)
\(\Leftrightarrow y^2+4xy-6y+7x^2-24x+21=0\)
\(\Leftrightarrow y^2+2y\left(2x-3\right)+\left(2x-3\right)^2+3x^2-12x+12=0\)
\(\Leftrightarrow\left(y+2x-3\right)^2+3\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(y+2x-3\right)^2+3\left(x-2\right)^2=0\)
Mà \(\hept{\begin{cases}\left(y+2x-3\right)^2\ge0\\3\left(x-2\right)^2\ge0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y+2x-3=0\\x-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=-1\end{cases}}}\)
Vậy cặp số \(\left(x,y\right)=\left(2;-1\right)\)
mink vẫn chưa hiểu lắm bn ak giảng lại cho mink hiểu đi