Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^2+2y^2+z^2+2xy+2xz+2yz+10x+6y+34=0\)
\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2+10x+25\right)+\left(y^2+6y+9\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2=0\)
Vì \(\hept{\begin{cases}\left(x+y+z\right)^2\ge0\\\left(x+5\right)^2\ge0\\\left(y+3\right)^2\ge0\end{cases}}\)\(\Rightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+y+z\right)^2=0\\\left(x+5\right)^2=0\\\left(y+3\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y+z=0\\x+5=0\\y+3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x+y+z=0\\x=-5\\y=-3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-5\\y=-3\\z=8\end{cases}}}\)
a) (x2+2x+1)+(y2+2y+1)=0
=>(x+1)2+(y+1)2=0
Vì\(\left(x+1\right)^2\ge0;\left(y+1\right)^2\ge0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y+1\right)^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-1\\y=-1\end{cases}}\)
Vậy x=y=-1
Bạn làm tiếp câu còn lại nha <3
Chúc bạn học tốt :)
mik ko bít
I don't now
................................
.............
Bài 2:
a: \(\Leftrightarrow\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
\(2x^2-4x+4xy+4y^2+4=0\)
\(\Rightarrow\left(x^2-4x+4\right)+\left(x^2+4xy+4y^2\right)=0\)
\(\Rightarrow\left(x^2-2.x.2+2^2\right)+\left(x^2+2.x.2y+\left(2y\right)^2\right)=0\)
\(\Rightarrow\left(x-2\right)^2+\left(x+2y\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x-2=0\\x+2y=0\end{cases}\Rightarrow}\hept{\begin{cases}x=2\\y=-1\end{cases}}\)
Chúc bạn học tốt.
2x2 + 4xy + 2x + 4y2 + 1 = 0
(x2 + 2.x.2y + 4y2) + x2 + 2x + 1 = 0
(X + 2y)2 + (x + 1)2 = 0
\(\Leftrightarrow\hept{\begin{cases}\left(x+2y\right)^2=0\\\left(x+1\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+2y=0\\x+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}-1+2y=0\\x=-1\end{cases}}\Rightarrow\hept{\begin{cases}y=\frac{1}{2}\\x=-1\end{cases}}\)