Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b. Ta có \(x:y:z=2:5:3\)nên nếu gọi x=2a thì y=5a;z=3a
Từ đó \(x+3y-2z=2a+3.5a-2.3a=-22\Leftrightarrow11a=-22\Leftrightarrow a=-2\)
\(\Rightarrow x=2a=-4\); \(y=5a=-10\); \(z=3a=-6\)
Vậy ......
Ta có: \(x:y:z=2:3:4\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{2z}{8}\)
Vì \(x-2z+7=10-y\)
\(\Rightarrow x-2z+y=10-7\)
\(\Rightarrow x+y-2z=3\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{2z}{8}=\frac{x+y-2z}{2+3-8}=-1\)
\(\Rightarrow\hept{\begin{cases}x=-1.2=-2\\y=-1.3=-3\\z=-1.4=-4\end{cases}}\)
Vậy...
Ta có: \(x-2z+7=10-y\)
\(\Leftrightarrow x+y-2z=10-7\)
\(\Leftrightarrow x+y-2z=3\)
Vì \(x:y:z=2:3:4\)\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{2z}{8}=\frac{x+y-2z}{2+3-8}=\frac{3}{-3}=-1\)
\(\Rightarrow x=2.\left(-1\right)=-2\)
\(y=3.\left(-1\right)=-3\)
\(z=4.\left(-1\right)=-4\)
Vậy \(x=-2\); \(y=-3\); \(z=-4\)
a)
\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\Leftrightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
x =8.2 =16
y =12.2 =24
z=15.2 =30
b) \(\frac{x}{3}=\frac{y}{-2}=\frac{z}{4}=\frac{4x+y-2z}{4.3+\left(-2\right)-2.4}=-\frac{18}{2}=-9\)
x =-9.3 =-27
y =-9.(-2) = 18
z =-9.4 = -36
a) \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)
Áp dụng tc dãy tỉ số bằng nhau ta có:
\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
Khi đó: \(\hept{\begin{cases}\frac{5x}{50}=2\Rightarrow x=20\\\frac{y}{6}=2\Rightarrow y=12\\\frac{2z}{42}=2\Rightarrow z=42\end{cases}}\)
e) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)
Áp dụng tc dãy tỉ số bằng nhau ta có:
\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{2x+3y-z-5}{9}=\frac{50-5}{9}=5\)
Khi đó: \(\hept{\begin{cases}\frac{2x-2}{4}=5\Rightarrow x=11\\\frac{3y-6}{9}=5\Rightarrow y=17\\\frac{z-3}{4}=5\Rightarrow z=23\end{cases}}\).
1)
Có:\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\\\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\end{cases}\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}}\)
Áp dụng tc của DTSBN có:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x-y+z}{8-12+15}=\frac{33}{11}=3\) (vì x-y+z=33)
\(\Rightarrow\hept{\begin{cases}x=3.8=24\\y=3.12=36\\y=3.15=45\end{cases}}\)(tm)
Vậy.....................
2)
Có: \(\text{ x:y:z=2:3:4 }\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{x}{2}=\frac{3y}{9}=\frac{2z}{8}\)
Áp dụng tc của DTSBN có:
\(\frac{x}{2}=\frac{3y}{9}=\frac{2z}{8}=\frac{x+3y-2z}{2+9-8}=\frac{3}{3}=1\)(vì x+3y-z=3)
\(\Rightarrow\hept{\begin{cases}x=2\\y=3\\z=4\end{cases}}\)(tm)
Vậy................
A)Dựa vào tính chất của dãy tỉ số bằng nhau:
x/1 = y/2 = z/3 = 4x -3y +2z /4.1 -3.2 +2.3 =36/4 =9
x/1=9 =>x=9.1=9
y/2=9=>y=9.2=18
z/3=9=>z=9.3=27
B)Dựa vào tính chất của dãy tỉ số bằng nhau:
x/3=y/8=z/5=3x+y-2z/3.3+8-2.5=14/7=2
x/3=2=>x=2.3=6
y/8=2=>y=2.8=16
z/5=2=>z=2.5=10
C)Dựa vào tính chất của dãy tỉ số bằng nhau:
x/3=y/8=z/5=2y+3y-z/2.3+3.8-5=50/25=2
x/3=2=>x=2.3=6
y/8=2=>y=2.8=16
z/5=2=>z=2.5=10
A)Dựa vào tính chất của dãy tỉ số bằng nhau:
x/1 = y/2 = z/3 = 4x -3y +2z /4.1 -3.2 +2.3 =36/4 =9
x/1=9 =>x=9.1=9
y/2=9=>y=9.2=18
z/3=9=>z=9.3=27
B)Dựa vào tính chất của dãy tỉ số bằng nhau:
x/3=y/8=z/5=3x+y-2z/3.3+8-2.5=14/7=2
x/3=2=>x=2.3=6
y/8=2=>y=2.8=16
z/5=2=>z=2.5=10
C)Dựa vào tính chất của dãy tỉ số bằng nhau:
x/3=y/8=z/5=2y+3y-z/2.3+3.8-5=50/25=2
x/3=2=>x=2.3=6
y/8=2=>y=2.8=16
z/5=2=>z=2.5=10
Đặt\(\frac{x+1}{3}=\frac{y-2}{5}=\frac{2z+14}{9}=k\Rightarrow\hept{\begin{cases}x=3k-1\\y=5k+2\\z=4,5k-7\end{cases}}\)
Lại có x + z = y
=> 3k - 1 + 4,5k - 7 = 5k + 2
=> 3k + 4,5k - 5k = 2 + 1 + 7
=> 2,5k = 10
=> k = 4
Khi đó x = 3.4 - 1 = 11
y = 5.4 + 2 = 22
z = 4,5.4 - 7 = 11
Vậy x = 11 ; y = 22 ; z = 11
Lời giải:
Áp dụng TCDTSBN:
$\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{2z}{10}$
$=\frac{x+y-2z}{2+3-10}=\frac{10}{-5}=-2$
$\Rightarrow x=2(-2)=-4; y=3(-2)=-6; z=5(-2)=-10$