Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3/5 x= 2/3 y ->y=9/10x
x^2 -y^2=38 -> x^2 - (9/10)^2= 38
giải pt đó để tìm x nhá :)
Ta có: \(\frac{3}{5}x=\frac{2}{3}y\Leftrightarrow\frac{x}{y}=\frac{\frac{2}{3}}{\frac{3}{5}}=\frac{10}{9}\Leftrightarrow\frac{x^2}{y^2}=\frac{100}{81}\Leftrightarrow81x^2=100y^2\Leftrightarrow81x^2-100y^2=0\)
\(\Leftrightarrow81\left(x^2-y^2\right)-19y^2=0\Leftrightarrow81.38=19y^2\Leftrightarrow y^2=\frac{81.38}{19}=162\Leftrightarrow y=\sqrt{162}\)
Suy ra: \(x=\frac{10}{9}y=\frac{10}{9}\sqrt{162}=\frac{10\sqrt{162}}{9}\).
\(\frac{3}{5}x=\frac{2}{3}y\)
\(\Rightarrow\frac{3x}{5}:6=\frac{2y}{3}:6\)
\(\Rightarrow\frac{x}{10}=\frac{y}{9}\)
\(\Rightarrow\frac{x^2}{100}=\frac{y^2}{81}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{100}=\frac{y^2}{81}=\frac{x^2-y^2}{100-81}=\frac{38}{19}=2\)
- \(\frac{x^2}{100}=2\Rightarrow x^2=200\Rightarrow x\in\left\{-10\sqrt{2};10\sqrt{2}\right\}\)
- \(\frac{y^2}{81}=2\Rightarrow y^2=162\Rightarrow y\in\left\{-9\sqrt{2};9\sqrt{2}\right\}\)
Mà \(\frac{x}{10}=\frac{y}{9}\) nên x ; y cùng dấu
\(\Rightarrow\left(x;y\right)\in\left\{\left(-10\sqrt{2};-9\sqrt{2}\right);\left(10\sqrt{2};9\sqrt{2}\right)\right\}\)
Ta có :
\(\frac{3x}{5}=\frac{2y}{3}\)
\(\Rightarrow\frac{36x^2}{100}=\frac{36y^2}{81}\)
Áp dụng tc của ãy tỉ số bằng nhau ta có :
\(\frac{36x^2}{100}=\frac{36y^2}{81}=\frac{36\left(x^2-y^2\right)}{100-81}=\frac{36.38}{19}\)
Bạn giải pt ra là tìm dc x ; y nhé
\(\frac{3}{5}x=\frac{2}{3}y\Leftrightarrow\frac{x}{\left(\frac{2}{3}\right)}=\frac{y}{\left(\frac{3}{5}\right)}\Leftrightarrow\left[\frac{x}{\left(\frac{2}{3}\right)}\right]^2=\left[\frac{y}{\left(\frac{3}{5}\right)}\right]^2\Leftrightarrow\frac{x^2}{\left(\frac{4}{9}\right)}=\frac{y^2}{\left(\frac{9}{25}\right)}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{\left(\frac{4}{9}\right)}=\frac{y^2}{\left(\frac{9}{25}\right)}=\frac{x^2-y^2}{\left(\frac{4}{9}-\frac{9}{25}\right)}=\frac{38}{\left(\frac{19}{225}\right)}=450\)
\(\Leftrightarrow\begin{cases}x=10\sqrt{2}\\y=9\sqrt{2}\end{cases}\)
\(\frac{3}{5}\)x = \(\frac{2}{3}\)y (1)
\(x^2\) - \(y^2\) = 38 (2)
(1) => y = \(\frac{9}{10}\) x.Thay vao (1) ---> \(x^2\) - [\(\frac{9}{10}\)x]^2 = 38 <=> \(x^2\) - \(\frac{81}{100}\)\(x^2\) = 38
<=> \(\frac{19}{100}x^2\) = 38 <=> x2 = 2.100 = 200
<=>
{x = 10 can 2 ; y = (9/10)x = 9 can 2
{x = -10 can 2 ; y = (9/10)x = - 9 can 2.
Đặt \(\frac{x}{4}=\frac{y}{3}=\frac{z}{5}=kak\left(kak\ne0\right)\)
\(\Rightarrow\hept{\begin{cases}x=4kak\\y=3kak\\z=5kak\end{cases}}\)
Mà \(x^2+y^2+z^2=200\)
\(\Leftrightarrow\left(4kak\right)^2+\left(3kak\right)^2+\left(5kak\right)^2=200\)
\(\Leftrightarrow16.kak^2+9.kak^2+25.kak^2=200\)
\(\Leftrightarrow kak^2.\left(16+9+25\right)=200\)
\(\Leftrightarrow kak^2.50=200\)
\(\Leftrightarrow kak^2=4\)
\(\Leftrightarrow\orbr{\begin{cases}kak=2\\kak=-2\end{cases}}\)
+) Với \(kak=2\)thì \(\hept{\begin{cases}x=4kak=8\\y=3kak=6\\z=5kak=10\end{cases}}\)
+) Với \(kak=-2\)thì \(\hept{\begin{cases}x=4kak=-8\\y=3kak=-6\\z=5kak=-10\end{cases}}\)
Vậy ...
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\left(k\ne0\right)\)
\(\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=5k\end{cases}}\)
Ta có : \(xyz=-30\)
\(\Leftrightarrow2k\times3k\times5k=-30\)
\(\Leftrightarrow30k^3=-30\)
\(\Leftrightarrow k^3=-1\)
\(\Leftrightarrow k=-1\)
Thay vào ta được :
\(\hept{\begin{cases}x=2k=-2\\y=3k=-3\\z=5k=-5\end{cases}}\)
Vậy ...
a) \(\frac{2x}{3}=\frac{3y}{4}\Leftrightarrow8x=9y\Rightarrow x=\frac{9y}{8}\left(1\right)\)
\(\frac{3y}{4}=\frac{4z}{5}\Leftrightarrow15y=16z\Rightarrow z=\frac{15y}{16}\left(2\right)\)
THay (1) và (2) vào biểu thức \(x+y+z=41\);ta được : \(\frac{9y}{8}+y+\frac{15y}{16}=41\)
\(\Rightarrow18y+16y+15y=656\Rightarrow y=\frac{656}{49}\)
Do đó : \(x=\frac{\frac{9.656}{49}}{8}=\frac{738}{49}\)
\(z=\frac{\frac{15.656}{49}}{16}=\frac{615}{49}\)
KL : \(x=\frac{738}{49};y=\frac{656}{49};z=\frac{615}{49}\)
b) Ta có : \(4x=3y\Rightarrow x=\frac{3y}{4}\)(1)
\(5y=6z\Rightarrow z=\frac{5y}{6}\)(2)
Thay (1) và (2) vào biểu thức \(x^2+y^2+z^2=500\);ta được :
\(\left(\frac{3y}{4}\right)^2+y^2+\left(\frac{5y}{6}\right)^2=500\)
\(\Rightarrow\frac{9y^2}{16}+y^2+\frac{25y^2}{36}=500\Rightarrow324y^2+576y^2+400y^2=288000\)
\(\Rightarrow1300y^2=288000\Rightarrow y^2=\frac{2880}{13}\Rightarrow\orbr{\begin{cases}y=\frac{24\sqrt{65}}{13}\\y=-\frac{24\sqrt{65}}{13}\end{cases}}\)
Với \(y=\frac{24\sqrt{65}}{13}\Rightarrow x=\frac{3\cdot\frac{24\sqrt{65}}{13}}{4}=\frac{18\sqrt{65}}{13};z=\frac{5\cdot\frac{24\sqrt{65}}{13}}{6}\)
\(y=-\frac{24\sqrt{65}}{13}\Rightarrow x=-\frac{18\sqrt{65}}{13};z=\frac{5\cdot-\frac{24\sqrt{65}}{13}}{6}\)
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)
\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
\(\Rightarrow\frac{x^2}{64}=\frac{y^2}{144}=\frac{z^2}{225}=\frac{x^2+y^2}{208}=1\)
Vậy x = 8 ; y = 12 ; z = 15
\(\frac{3}{5}x=\frac{2}{3}y\Rightarrow9x=10y\Rightarrow x=\frac{10}{9}y\Rightarrow\)\(x^2=\frac{100}{81}y^2\Rightarrow x^2-y^2=\frac{100}{81}y^2-y^2\)\(=\frac{19}{81}y^2=38\Rightarrow y^2=162\Rightarrow x^2=200\)\(\Rightarrow\orbr{\begin{cases}x=\sqrt{200},y=\sqrt{162}\\x=-\sqrt{200},y=-\sqrt{162}\end{cases}}\)