K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2015

đề sai           

ADTC dãy tỉ số bằng nhau 

Ta có : 

\(\frac{x}{3}=\frac{y}{5}=\frac{x.y}{3.5}=10\)

\(.\frac{x}{3}=10\Leftrightarrow x=30\)

\(.\frac{y}{5}=10\Leftrightarrow y=50\)

\(\Rightarrow\hept{\begin{cases}x=30\\y=50\end{cases}}\)

4 tháng 10 2016

Bài 1:

 \(\frac{x}{2}\) = \(\frac{y}{3}\) , \(\frac{y}{4}\) = \(\frac{z}{5}\)  và x + y - z = 10

\(\frac{x}{2}\) = \(\frac{y}{3}\) --> \(\frac{x}{2.4}\) = \(\frac{y}{3.4}\) => \(\frac{x}{8}\) = \(\frac{y}{12}\) 

\(\frac{y}{4}\) = \(\frac{z}{5}\) --> \(\frac{y}{4.3}\) = \(\frac{z}{5.3}\) => \(\frac{y}{12}\) = \(\frac{z}{15}\) 

=> \(\frac{x}{8}=\frac{y}{12}\)  = \(\frac{z}{15}\)             

- Áp dụng tính chất dãy tỉ số bằng nhau ta có:

 \(\frac{x}{8}\) = \(\frac{y}{12}\) = \(\frac{z}{15}\) --> \(\frac{x+y-z}{8+12-15}_{ }\) = \(\frac{10}{5}\) = 2

=> \(\frac{x}{8}\) = 2 --> x = 16

      \(\frac{y}{12}=2\) --> y = 24

      \(\frac{z}{15}=2\) --> z = 30

Vậy x = 16 ; y = 24 ; z = 30

Bài 2: 

               \(\frac{x}{2}=\frac{y}{5}\) và x . y = 10

  Đặt \(\frac{x}{2}=\frac{y}{5}=k\) 

Ta có: x = 2 . k ; y = 5 . k

          x . y = 10 => 2k . 5k = 10

                          => 10 . \(^{k^2}\) = 10

                          => \(^{k^2}\) = 1 --> k = -1 hoặc k = 1

          k = 1 ta có \(\frac{x}{2}=\frac{y}{5}=1\) --> x = 2 ; y = 5

          k = -1 ta có \(\frac{x}{2}=\frac{y}{5}=-1\) --> x = -2 ; y = -5

 

                                                              

4 tháng 10 2016

Bài 1:

\(\frac{x}{2}=\frac{y}{3}\Rightarrow\)\(\frac{x}{8}=\frac{y}{12}\)

\(\frac{y}{4}=\frac{z}{5}\Rightarrow\)\(\frac{y}{12}=\frac{z}{15}\)

=> \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có:

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

=>\(\begin{cases}x=16\\y=24\\z=30\end{cases}\)

Bài 2:

Đặt \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow x=2k;y=5k\)

Có: xy=10

\(\Leftrightarrow2k\cdot5k=10\)

\(\Leftrightarrow k^2=1\Leftrightarrow\left[\begin{array}{nghiempt}k=1\\k=-1\end{array}\right.\)

Với k=1 thì x=2 ; y=5

Với k=-1 thì x=-2 ; y=-5

 

19 tháng 8 2018

ta có \(\frac{x\left(x.y\right)}{y\left(x.y\right)}=\frac{3}{10}:\left(-\frac{3}{50}\right)=-5=\frac{x}{y}\)

\(x=-5y\)suy ra \(-5\left(-5y-y\right)=\frac{3}{10}\)suy ra \(30y^2=\frac{3}{10}\)

nên \(y=\frac{1}{10}\)hoặc \(y=-\frac{1}{10}\)

+) Với \(y=\frac{1}{10}\)suy ra \(x=-5.\frac{1}{10}=-\frac{1}{2}\)

+) Với \(y=-\frac{1}{10}\)suy ra \(x=-5.\left(-\frac{1}{10}\right)=\frac{1}{2}\).

Chúc làm bài may mắn

13 tháng 10 2016

a) Đặt \(\frac{x}{2}=\frac{y}{5}=k\)

\(\Rightarrow x=2k\)

\(\Rightarrow y=5k\)

\(\Rightarrow xy=2k.5k=10k^2\)

\(\Rightarrow10k^2=10\)

\(\Rightarrow k^2=\frac{10}{10}=1\Rightarrow\left[\begin{array}{nghiempt}k=1\\k=-1\end{array}\right.\)

Với \(k=1\)

\(\Rightarrow x=2k=2.1=2\)

\(\Rightarrow y=5k\Rightarrow y=5.1=5\)

Với \(k=-1\)

\(\Rightarrow x=2k=-1.2=-2\)

\(\Rightarrow y=5k=-1.5=-5\)

 

13 tháng 10 2016

b) \(7x=3y\Rightarrow\frac{7x}{21}=\frac{3y}{21}\Rightarrow\frac{x}{7}=\frac{y}{3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{7}=\frac{y}{3}=\frac{x-y}{7-3}=\frac{16}{4}=4\)

  • \(x=4.7=28\)
  • \(y=4.3=12\)

Vậy: \(x=28,y=12\)

27 tháng 9 2016

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{2}=\frac{y}{5}=k\)

\(\Rightarrow x=2k\)

\(\Rightarrow y=5k\)

\(\Rightarrow x.y=2k.5k=10k^2\)

\(\Rightarrow k^2=1\Rightarrow\hept{\begin{cases}k=1\\k=-1\end{cases}}\)

Với \(k=1\Rightarrow x=2.1=2\Rightarrow y=5.1=5\)

Với \(k=-1\Rightarrow x=-1.2=-2\Rightarrow y=-1.5=-5\)

28 tháng 7 2016

đặt \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow x=2k\)và y=5k mà x\(\times\)y=10\(\Rightarrow2k\times5k=10\)\(\Leftrightarrow10k^2=10\)

\(\Rightarrow k^2=10:10\Rightarrow k^2=1\)

tiếp theo là ...........................................

27 tháng 6 2017

đặt \(\frac{x}{2}=\frac{y}{5}=k\)   

\(\Rightarrow x=2k;y=5k\)

Mà xy = 10

\(\Rightarrow\)\(2k.5k=10\)

\(\Rightarrow10k^2=10\)

\(k^2=10:10\)

\(k^2=1\)

\(\Rightarrow\orbr{\begin{cases}k=1\\k=-1\end{cases}}\)

Nếu k = 1 thì x = 2 ; y = 5

Nếu k = -1 thì x = -2 ; y = -5

Vậy ...

ADTC dãy tỉ số bằng nhau 

Ta có : 

\(\frac{x}{2}=\frac{y}{5}=\frac{x.y}{2.5}=\frac{10}{10}=1\)

\(.\frac{x}{2}=1\Leftrightarrow x=2\)

\(.\frac{y}{5}=1\Leftrightarrow y=5\)

\(\Rightarrow\hept{\begin{cases}x=2\\y=5\end{cases}}\)

4 tháng 7 2017

Bài 1: \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{20}\)

=>\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2z}{18}=\frac{3y}{36}\)

Áp dụng tính chất của dãy tỉ số bằng nhau: \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2z}{18}=\frac{3y}{36}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)

=>x=27;z=36;z=60

Bài 2: \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=5k\end{cases}}\Rightarrow xy=2k.5k=10k^2=40\Rightarrow k^2=4\Rightarrow\hept{\begin{cases}k=-2\\k=2\end{cases}}\)

+)k=-2 => x=-4;y=-5

+)k=2 => x=4;y=5

Vậy x=-4;y=-5 hoặc x=4;y=5

2 tháng 8 2018

a. Ta có: \(\frac{x}{5}=\frac{y}{7}=\frac{x-y}{5-7}=\frac{-12}{-2}=6\)

=> \(\hept{\begin{cases}x=6.5=30\\y=6.7=42\end{cases}}\)

b. x.8 = y. 16

=> \(\frac{x}{16}=\frac{y}{8}=\frac{y-x}{8-16}=\frac{64}{-8}=-8\)

=> \(\hept{\begin{cases}x=-8.16=-128\\y=-8.8=-64\end{cases}}\)

c.Ta có:  \(\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2-\left(-5\right)}=\frac{x-y}{2+5}=\frac{7}{7}=1\)

=> \(\hept{\begin{cases}x=1.2=2\\y=1.\left(-5\right)=-5\end{cases}}\)

d. Ta có: xy = 10 => x = \(\frac{10}{y}\)(1)

Thay (1) vào \(\frac{x}{2}=\frac{y}{5}\), ta được:

\(\frac{10}{\frac{y}{2}}=\frac{y}{5}\)=> \(\frac{5}{y}=\frac{y}{5}\)

=> y2 = 25

=> y = + 5

y = 5 => x = \(\frac{10}{y}\)\(\frac{10}{5}\)= 2

y = -5 => x = \(\frac{10}{y}\)\(\frac{10}{-5}\) = -2

Vậy y = 5; x = 2

       y = - 5: x = -2

2 tháng 8 2018

a) Đặt  \(\frac{x}{5}=\frac{y}{7}=k\left(k\ne0\right)\)

\(\Rightarrow\hept{\begin{cases}x=5k\\y=7k\end{cases}}\)

Mà  \(x-y=-12\)

\(\Rightarrow5k-7k=-12\)

\(\Leftrightarrow-2k=-12\)

\(\Leftrightarrow k=6\)

\(\Rightarrow\hept{\begin{cases}x=5k=30\\y=7k=42\end{cases}}\)

Vậy ...

b) Ta có :  \(x.8=y.16\Leftrightarrow\frac{x}{16}=\frac{y}{8}\)

Đặt  \(\frac{x}{16}=\frac{y}{8}=k\left(k\ne0\right)\)

\(\Rightarrow\hept{\begin{cases}x=16k\\y=8k\end{cases}}\)

Mà  \(y-x=64\)

\(\Rightarrow8k-16k=64\)

\(\Leftrightarrow-8k=64\)

\(\Leftrightarrow k=-2\)

\(\Rightarrow\hept{\begin{cases}x=16k=-32\\y=8k=-16\end{cases}}\)

Vậy ...

đặt x/3=y/5=k(k khác 0) =>x=3k; y=5k

=> x.y=3k .5k=15.k^2=135

=k^2=135:15=9=3^2 hoặc (-3)^2

 th1:k=3=> x=9;y=15

th2:k=-3=>x=-9;y=-15

14 tháng 6 2019

#)Giải :

Đặt \(\frac{x}{3}=\frac{y}{5}=k\)

\(\Rightarrow\hept{\begin{cases}x=3k\\y=5k\end{cases}}\)

\(\Rightarrow xy=3k.5k=135\)

\(\Rightarrow15k^2=135\)

\(\Rightarrow k^2=9\)

\(\Rightarrow k=\pm3\)

\(\hept{\begin{cases}x=3.3=9\\y=3.5=15\end{cases}}\)

\(\hept{\begin{cases}x=-3.3=-9\\y=-3.5=-15\end{cases}}\)

Vậy x có hai bộ số (x,y) là (9,15) ; (-9,-15)

19 tháng 8 2016

Đặt: \(\frac{x}{3}=\frac{y}{5}=k\)

\(\Rightarrow x=3k\)

\(y=5k\)

\(xy=3k.5k=15k^2=135\Rightarrow k=9\Rightarrow k=\sqrt[2]{9}=3\)

Vậy: \(x=3.3=9\)

\(y=3.5=15\)