\(\frac{1+3.y}{12}=\frac{1+5.y}{5.x}=\frac{1+7.y}{4.x}\)

GIÚP...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2018

mk làm mẫu 2 bài đầu nhé, các bài còn lại bạn làm tương tự, các bài này đều áp dụng tính chất dãy tỉ số bằng nhau

1)  Áp dụng tính chất dãy tỉ số bằng nhau ta có     

\(\frac{x}{3}=\frac{y}{4}=\frac{x+y}{3+4}=\frac{14}{7}=2\)

suy ra:  \(\frac{x}{3}=2\)=>  \(x=6\)

            \(\frac{y}{4}=2\)=>  \(y=8\)

Vậy...

2)  Áp dụng tính chất dãy tỉ số bằng nhau ta có:

   \(\frac{x}{5}=\frac{y}{3}=\frac{x-y}{5-3}=\frac{20}{2}=10\)

suy ra:  \(\frac{x}{5}=10\)=>  \(x=50\)

             \(\frac{y}{3}=10\)=>  \(y=30\)

Vậy...

17 tháng 11 2019

a) Áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{x}{9}=\frac{y}{8}=\frac{x-y}{9-8}=\frac{13}{1}=13\)

\(\Rightarrow\hept{\begin{cases}x=13.9\\y=13.8\end{cases}\Rightarrow\hept{\begin{cases}x=117\\y=104\end{cases}}}\)

Vậy x = 117 ; y = 104

17 tháng 11 2019

b) Từ đẳng thức \(\hept{\begin{cases}\frac{x}{3}=\frac{y}{5}\\\frac{y}{3}=\frac{z}{7}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{9}=\frac{y}{15}\\\frac{y}{15}=\frac{z}{21}\end{cases}\Rightarrow}\frac{x}{9}}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{x}{9}=\frac{y}{15}=\frac{z}{21}=\frac{x-y}{9-15}=\frac{12}{-6}=-2\)

\(\Rightarrow\hept{\begin{cases}x=9.\left(-2\right)\\y=\left(-2\right).15\\z=\left(-2\right).21\end{cases}\Rightarrow\hept{\begin{cases}x=-18\\y=-30\\z=-42\end{cases}}}\)

Vậy x = - 18 ; y = -30 ; z = - 42

c) (23 : 4) . 2x + 1  = 64

=> (23 : 22).2x + 1 = 27

=> 2.2x + 1 = 27

=> 2x + 1 = 26

=> x + 1 = 6

=> x = 5

Vậy x = 5

9 tháng 10 2016

Bài 1:

Giải:

Ta có: \(\frac{1+3y}{12}=\frac{1+7y}{4x}=\frac{1+1+3y+7y}{12+4x}=\frac{2+10y}{2\left(6+2x\right)}=\frac{2\left(1+5y\right)}{2\left(6+2x\right)}=\frac{1+5y}{6+2x}=\frac{1+5y}{5x}\)

+) Xét \(1+5y=0\Rightarrow y=\frac{-1}{5}\Rightarrow1+5y=0\) ( loại )

+) Xét \(1+5y\ne0\Rightarrow6+2x=5x\)

\(\Rightarrow5x-2x=6\)

\(\Rightarrow3x=6\)

\(\Rightarrow x=2\)

Mà \(\frac{1+3y}{12}=\frac{1+5y}{5x}\)

\(\Rightarrow\frac{1+3y}{12}=\frac{1+5y}{10}\)

\(\Rightarrow10\left(1+3y\right)=12\left(1+5y\right)\)

\(\Rightarrow10+30y=12+60y\)

\(\Rightarrow10-12=60y-30y\)

\(\Rightarrow-2=30y\)

\(\Rightarrow y=\frac{-1}{15}\)

Vậy \(x=2,y=\frac{-1}{15}\)

 

 

17 tháng 12 2018

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x+3y-4z}{2\cdot3+3\cdot4-4\cdot5}=\frac{-200}{-2}=100\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{3}=100\\\frac{y}{4}=100\\\frac{z}{5}=100\end{cases}\Rightarrow\hept{\begin{cases}x=300\\y=400\\z=500\end{cases}}}\)

Vậy.......

17 tháng 12 2018

Ta có: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{6}=\frac{3y}{12}=\frac{4z}{20}=\frac{2x+3y-4z}{6+12-20}=\frac{-200}{-2}=100\)

\(\Rightarrow x=100.3=300\)

    \(y=100.4=400\)

    \(z=100.5=500\)

Vậy x = 300; y = 400; z = 500

    

2 tháng 6 2015

1) \(\frac{x+4}{7+y}=\frac{4}{7}\)\(\Rightarrow7\left(x+4\right)=4\left(7+y\right)\)

\(\Rightarrow7x+28=28+4y\)

\(\Rightarrow7x=4y\)

\(\Rightarrow\frac{x}{4}=\frac{y}{7}\)

áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{4}=\frac{y}{7}=\frac{x+y}{4+7}=\frac{22}{11}=2\)

x/4 = 2  => x = 4 x 2 = 8

y/7 = 2   => y = 2 x 7 = 14 

30 tháng 7 2017

Đáp án của mik là:14

29 tháng 9 2016

a/ Ta luôn có : \(\begin{cases}x^2\ge0\\\left(y-\frac{1}{10}\right)^4\ge0\end{cases}\)\(\Rightarrow x^2+\left(y-\frac{1}{10}\right)^4\ge0\)

Để dấu "=" xảy ra thì x = 0 , y = 1/10

b/ Tương tự.

16 tháng 4 2020

a) ĐẶT \(\frac{x}{5}=\frac{y}{2}=k;\frac{x}{5}=k\Rightarrow x=5k;\frac{y}{2}=k\Rightarrow y=2k\)

ta có \(x.y=160\)

 thay\(5k.2k=160\)

\(k^2.10=160\)

\(k^2=16\)

\(\Rightarrow k=\pm4\)

do đó

 \(\frac{x}{5}=\pm4\Rightarrow\hept{\begin{cases}\frac{x}{5}=4\\\frac{x}{5}=-4\end{cases}\Leftrightarrow\hept{\begin{cases}x=5.4=20\\x=5.\left(-4\right)=-20\end{cases}}}\)

\(\frac{y}{2}=\pm4\Rightarrow\hept{\begin{cases}\frac{y}{2}=4\\\frac{y}{2}=-4\end{cases}\Leftrightarrow\hept{\begin{cases}y=2.4=8\\y=2.\left(-4\right)=-8\end{cases}}}\)

vậy các x,y thỏa mãn là \(\left\{x=20;y=8\right\}\left\{x=-20;y=-8\right\}\)

16 tháng 4 2020

a) X*Y=160

=>X=160/Y (1)

X/5 =Y/2

=> 2x=5y(tính chất tỉ lệ thức)

=>x=5Y/2 (2)

(1),(2)=> 160/y = 5y/2

=> y=8

24 tháng 8 2019

a) Ta có: \(\frac{x}{12}=\frac{y}{3}.\)

=> \(\frac{x}{12}=\frac{y}{3}\)\(x-y=36.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{x}{12}=\frac{y}{3}=\frac{x-y}{12-3}=\frac{36}{9}=4.\)

\(\left\{{}\begin{matrix}\frac{x}{12}=4=>x=4.12=48\\\frac{y}{3}=4=>y=4.3=12\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(48;12\right).\)

b)

\(\frac{2}{3}+\frac{5}{3}x=\frac{5}{7}\)

\(\frac{5}{3}x=\frac{5}{7}-\frac{2}{3}\)

\(\frac{5}{3}x=\frac{1}{21}\)

\(x=\frac{1}{21}:\frac{5}{3}\)

\(x=\frac{1}{35}\)

Vậy \(x=\frac{1}{35}.\)

\(\left(x-\frac{1}{2}\right)^3=\frac{1}{27}\)

\(\left(x-\frac{1}{2}\right)^3=\left(\frac{1}{3}\right)^3\)

\(x-\frac{1}{2}=\frac{1}{3}\)

\(x=\frac{1}{3}+\frac{1}{2}\)

\(x=\frac{5}{6}\)

Vậy \(x=\frac{5}{6}.\)

Có 1 câu bạn đăng mình làm ở dưới rồi mà.

Chúc bạn học tốt!

24 tháng 8 2019

a)áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{12}=\frac{y}{3}=\frac{x-y}{12-3}=\frac{36}{9}=4\)

\(\)x/12=4 suy ra x=12.4=48

y/3=4 suy ra y=3.4 =12

b)\(\frac{2}{3}+\frac{5}{3}x=\frac{5}{7}\)

\(\frac{5}{3}x=\frac{5}{7}-\frac{2}{3}\)

\(\frac{5}{3}x=\frac{1}{21}\)

\(x=\frac{1}{21}:\frac{5}{3}\)

\(x=\frac{1}{35}\)

\(\frac{11}{12}-\left(\frac{2}{5}+x\right)=\frac{2}{3}\)

\(\left(\frac{2}{5}+x\right)=\frac{11}{12}-\frac{2}{3}\)

\(\frac{2}{5}+x=\frac{1}{4}\)

\(x=\frac{1}{4}-\frac{2}{5}\)

\(x=\frac{-3}{20}\)

\(\left|x-\frac{2}{5}\right|+\frac{3}{4}=\frac{11}{4}\)

\(\left|x-\frac{2}{5}\right|=\frac{11}{4}-\frac{3}{4}\)

\(\left|x-\frac{2}{5}\right|=2\)

suy ra x-2/5=2 hoac x-2/5=-2

\(x-\frac{2}{5}=2\)

\(x=\frac{12}{5}\)

\(x-\frac{2}{5}=-2\)

\(x=\frac{-8}{5}\)

\(\left(x-\frac{1}{2}\right)^3=\frac{1}{27}\)

\(\left(x-\frac{1}{2}\right)^3=\left(\frac{1}{3}\right)^3\)

\(x-\frac{1}{2}=\frac{1}{3}\)

\(x=\frac{1}{3}+\frac{1}{2}\)

\(x=\frac{5}{6}\)