Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 => x-1/3=y-2/4=z-3/5
áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1
do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương tự
Bài 1:
a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )
\(\dfrac{1}{2}x=\dfrac{2}{3}y=\dfrac{3}{4}z\)
\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{\dfrac{3}{2}}=\dfrac{z}{\dfrac{4}{3}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2}=\dfrac{y}{\dfrac{3}{2}}=\dfrac{x-y}{2-\dfrac{3}{2}}=\dfrac{15}{\dfrac{1}{2}}=30\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=30\Rightarrow x=60\\\dfrac{y}{\dfrac{3}{2}}=30\Rightarrow y=45\\\dfrac{z}{\dfrac{4}{3}}=30\Rightarrow z=40\end{matrix}\right.\)
Ta có : \(\frac{x}{\frac{2}{3}}=\frac{y}{\frac{1}{2}}=\frac{x-y}{\frac{2}{3}-\frac{1}{2}}=\frac{15}{\frac{1}{6}}=90\)
=> \(\frac{x}{\frac{2}{3}}=90\Rightarrow x=90.\frac{2}{3}=60\)
=> \(\frac{y}{\frac{1}{2}}=90\Rightarrow y=90.\frac{1}{2}=45\)
=> \(\frac{z}{\frac{4}{3}}=90\Rightarrow z=90.\frac{4}{3}=120\)
1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)
=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
=>\(x=3\cdot20=60\)
\(y=3\cdot24=72\)
\(z=3\cdot21=63\)
3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)
=> \(x=1\cdot15=15\)
\(y=1\cdot7=7\)
\(z=1\cdot3=3\)
\(t=1\cdot1=1\)
Ta có : \(\frac{1}{2}x=\frac{x}{2}\) ; \(\frac{2}{3}y=\frac{y}{\frac{3}{2}}\); \(\frac{3}{4}z=\frac{z}{\frac{4}{3}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{2}=\frac{y}{\frac{3}{2}}=\frac{z}{\frac{4}{3}}=\frac{x-y}{2-\frac{3}{2}}=\frac{15}{\frac{1}{2}}=30\)
\(\Rightarrow\begin{cases}\frac{x}{2}=30\Rightarrow x=30.2=60\\\frac{y}{\frac{3}{2}}=30\Rightarrow y=30.\frac{3}{2}=45\\\frac{z}{\frac{4}{3}}=30\Rightarrow z=30.\frac{4}{3}=40\end{cases}\)
Vậy \(x=60;y=45;z=40\)
\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\)và \(x+y-z=15\)
Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{x}{8}=\frac{y}{12};\frac{y}{4}=\frac{z}{5}=\frac{y}{12}=\frac{z}{15}\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{z+y-z}{8+12-15}=\frac{15}{5}=3\)
Từ \(\frac{x}{8}=3\Rightarrow x=3.8=24\)
Từ \(\frac{y}{12}=3\Rightarrow y=3.12=36\)
Từ \(\frac{z}{15}=3\Rightarrow z=3.15=45\)
Vậy \(x=24;y=36;z=45\)
ta có: \(\frac{x}{\frac{2}{3}}=\frac{y}{\frac{1}{2}}\) =\(\frac{x-y}{\frac{2}{3}-\frac{1}{2}}\)= \(\frac{15}{\frac{1}{6}}\)=90
suy ra: x=\(90.\frac{2}{3}\)=60 và y=\(90.\frac{1}{2}\)=45
ta có: \(\frac{y}{\frac{3}{4}}=\frac{z}{\frac{2}{3}}\)=\(\frac{45}{\frac{3}{4}}=\frac{z}{\frac{2}{3}}\) suy ra : z=\(45.\frac{2}{3}:\frac{3}{4}\)=40