Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^2+5x=12\)
\(\Leftrightarrow2x^2+5x-12=0\)
\(\Leftrightarrow2x^2+8x-3x-12=0\)
\(\Leftrightarrow2x\left(x+4\right)-3\left(x+4\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x+4=0\\2x-3=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-4\\x=\frac{3}{2}\end{array}\right.\)
Vậy ............
Ta có: \(\frac{x+y}{2014}\ne\frac{x-y}{2016}\)
\(\Leftrightarrow2016x+2016y=2014x-2014y\)
\(\Leftrightarrow2x=-4030y\)
\(\Leftrightarrow x=-2015y\)
Thay \(x=-2015y\)vào \(\frac{x+y}{2014}=\frac{xy}{2015}\)ta được:
\(\Leftrightarrow\frac{-2015+y}{2014}=\frac{-2015y}{2015}\)
\(\Leftrightarrow\frac{-2014y}{2014}=\frac{-2015y^2}{2015}\)
\(\Leftrightarrow-y=-y^2\)
\(\Leftrightarrow y-y^2=0\)
\(\Leftrightarrow y\left(1-y\right)=0\)
\(\Rightarrow\orbr{\begin{cases}y=0\\1-y=0\end{cases}}\Rightarrow\orbr{\begin{cases}y=0\\y=1\end{cases}}\)
Trường hợp \(y=0\):
\(y=0\Rightarrow x.y=-2015.0=0\)
Trường hợp \(y=1\):
\(y=1\Rightarrow x.y=-2015.1=-2015\)
Từ gt,suy ra : (x - 2)(2 - x) = -16.4
-(x - 2)2 = -64
(x - 2)2 = 64
\(\Rightarrow\orbr{\begin{cases}x-2=-8\\x-2=8\end{cases}\Rightarrow\orbr{\begin{cases}x=-6\\x=10\end{cases}}}\)
\(x=-16.4=-64\)
\(x^2=-8^2\)
Vay: x=-8
Ma theo de bai x-2
Nen ta lay x+2
x+2=-8+2=-6
=>\(x=-6\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{a+b-c}{c}=\frac{\left(b+c-a\right)+\left(c+a-b\right)+\left(a+b-c\right)}{a+b+c}\)
\(=\frac{a+b+c}{a+b+c}=1\)
ax = by = cz = \(\frac{x}{\frac{1}{a}}=\frac{y}{\frac{1}{b}}=\frac{z}{\frac{1}{c}}=k\left(a,b,c\ne0\right)\)
\(\Rightarrow\hept{\begin{cases}x=\frac{k}{a}\\y=\frac{k}{b}\\z=\frac{k}{c}\end{cases}\Rightarrow xyz=\frac{k^3}{abc}=\frac{8}{abc}\Rightarrow k^3=8\Rightarrow k=2\Rightarrow\hept{\begin{cases}x=\frac{2}{a}\\y=\frac{2}{b}\\z=\frac{2}{c}\end{cases}}}\)
\(2x^2+5x=12\)
\(\Leftrightarrow2x^2+5x-12=0\)
\(\Leftrightarrow2x^2+8x-3x-12=0\) .
\(\Leftrightarrow2x\left(x+4\right)-3\left(x+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+4=0\\2x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-4\\x=\frac{3}{2}\end{cases}}\)