Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
\(\frac{x-241}{17}+\frac{x-220}{19}+\frac{x-195}{21}+\frac{x-166}{23}=10\)
\(\Rightarrow\left(\frac{x-241}{17}-1\right)+\left(\frac{x-220}{19}-2\right)+\left(\frac{x-195}{21}-3\right)+\left(\frac{x-166}{23}-4\right)\)
\(=10-1-2-3-4=0\)
\(\Rightarrow\frac{x-258}{17}+\frac{x-258}{19}+\frac{x-258}{21}+\frac{x-258}{23}=0\)
\(\Rightarrow\left(x-258\right)\left(\frac{1}{17}+\frac{1}{19}+\frac{1}{21}+\frac{1}{23}\right)=0\)
\(\Rightarrow x-258=0\)
\(\Leftrightarrow x=258\)
\(\frac{\text{x−241}}{17}+\frac{220}{19}+\frac{x−195}{21}+\frac{x−166}{23}=10\)
\(\Rightarrow\left[\frac{\left(x-241\right)}{17-1}\right]+\left[\frac{\left(x-220\right)}{19-2}\right]+\left[\frac{\left(x-195\right)}{21-3}\right]+\left[\frac{\left(x-166\right)}{23-4}\right]=10-1-2-3-4\)
\(\left(\text{Cộng 2 vế cho -1 - 2 - 3 - 4}\right)\)
\(\Rightarrow\frac{\left(x-258\right)}{17}+\frac{\left(x-258\right)}{19}+\frac{\left(x-258\right)}{21}+\frac{\left(x-258\right)}{23}=0\)
\(\Rightarrow\left(x-258\right).\left(\frac{1}{17}+\frac{1}{19}+\frac{1}{21}+\frac{1}{23}\right)=0\)
\(\Rightarrow x-258=0\Rightarrow x=258\)
=> \(\frac{x-241}{17}-1+\frac{x-220}{19}-2+\frac{x-195}{21}-3+\frac{x-170}{22}-4=0\)
<=> \(\left(\frac{x-241}{17}-\frac{17}{17}\right)+\left(\frac{x-220}{19}-\frac{38}{19}\right)+\left(\frac{x-195}{21}-\frac{63}{21}\right)+\left(\frac{x-170}{22}-\frac{88}{22}\right)=0\)
<=> \(\frac{x-258}{17}+\frac{x-258}{19}+\frac{x-258}{21}+\frac{x-258}{22}=0\)
<=> \(\left(x-258\right).\left(\frac{1}{17}+\frac{1}{19}+\frac{1}{21}+\frac{1}{22}\right)=0\)
<=> x - 258 = 0 do \(\left(\frac{1}{17}+\frac{1}{19}+\frac{1}{21}+\frac{1}{22}\right)\ne0\)
=> x = 258
10=1+2+3+4
X=241+17x1=258
X=220+19x2=258
X=195+21x3=258
X=170+22x4=258.
a: \(\dfrac{2032-x}{25}+\dfrac{2053-x}{23}+\dfrac{2070-x}{21}+\dfrac{2083-x}{19}-10=0\)
\(\Leftrightarrow\left(\dfrac{2032-x}{25}-1\right)+\left(\dfrac{2053-x}{23}-2\right)+\left(\dfrac{2070-x}{21}-3\right)+\left(\dfrac{2083-x}{19}-4\right)=0\)
=>2007-x=0
hay x=2007
b: \(\Leftrightarrow x+\left(1+1+1+1+1+1+1\right)+\left(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}\right)=0\)
\(\Leftrightarrow x+7+\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}\right)=0\)
=>x+7+1/3-1/10=0
hay x=-217/30
\(\dfrac{148-x}{25}+\dfrac{169-x}{23}+\dfrac{186-x}{21}+\dfrac{199-x}{19}=10\)
\(\Leftrightarrow\left(\dfrac{148-x}{25}-1\right)+\left(\dfrac{169-x}{23}-2\right)+\left(\dfrac{186-x}{21}-3\right)+\left(\dfrac{199-x}{19}-4\right)=0\)
\(\Leftrightarrow\dfrac{123-x}{25}+\dfrac{123-x}{23}+\dfrac{123-x}{21}+\dfrac{123-x}{19}=0\)
\(\Leftrightarrow\left(123-x\right)\left(\dfrac{1}{25}+\dfrac{1}{23}+\dfrac{1}{21}+\dfrac{1}{19}\right)=0\)
\(\Leftrightarrow123-x=0\Leftrightarrow x=123\)
Vậy x = 123
a) Ta có: \(\dfrac{x}{y}=\dfrac{17}{3}\Rightarrow\dfrac{x}{17}=\dfrac{y}{3}\) và x + y = 60
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\dfrac{x}{17}=\dfrac{y}{3}=\dfrac{x+y}{17+3}=\dfrac{60}{20}=3\)
\(\dfrac{x}{17}=3\Rightarrow x=17.3=51\)
\(\dfrac{y}{3}=3\Rightarrow y=3.3=9\)
Vậy x = 51; y = 9
b) Ta có: \(\dfrac{x}{19}=\dfrac{y}{21}\Rightarrow\dfrac{2x}{38}=\dfrac{y}{21}\) và 2x - y = 34
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\dfrac{2x}{38}=\dfrac{y}{21}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)
\(\dfrac{x}{19}=2\Rightarrow x=2.19=38\)
\(\dfrac{y}{21}=2\Rightarrow y=21.2=42\)
Vậy x = 38; y = 42.
Ta có : \(\dfrac{x}{y}\) = \(\dfrac{17}{3}\) \(\Leftrightarrow\) \(\dfrac{x}{17}\) = \(\dfrac{y}{3}\) và \(x+y\) \(=60\)
\(\text{Áp dụng tính chất của dãy tỉ số bằng nhau , ta được : }\)
\(\dfrac{x}{17}\) = \(\dfrac{y}{3}\) = \(\dfrac{x+y}{17+3}\) = \(\dfrac{60}{20}\) = \(3\)
\(+\)) \(\dfrac{x}{17}\) \(=\)\(3\) \(\Rightarrow\) \(x=51\)
+ ) \(\dfrac{y}{3}\) \(=3\) \(\Rightarrow\) \(y=9\)
Vậy \(x=51\) ; \(y=9\)
Ta có : \(\dfrac{x}{19}\) = \(\dfrac{y}{21}\) \(\Leftrightarrow\) \(\dfrac{2x}{38}\) \(=\) \(\dfrac{y}{21}\) và \(2x-y=34\)
\(\text{Áp dụng tính chất của dãy tỉ số bằng nhau , ta được : }\)
\(\dfrac{2x}{38}\)\(=\) \(\dfrac{y}{21}\) = \(\dfrac{2x-y}{38-21}\) \(=\) \(\dfrac{34}{17}\) \(=\) \(2\)
+ ) \(\dfrac{2x}{38}\) = \(\dfrac{x}{19}\) \(=\) \(2\) \(\Rightarrow\) \(x=38\)
+ ) \(\dfrac{y}{21}\) = 2 \(\Rightarrow\) \(x=42\)
Vậy \(x=38\) ; \(x=42\)
\(\dfrac{x-241}{17}+\dfrac{x-220}{19}+\dfrac{x-195}{21}+\dfrac{x-166}{23}=10\)
\(\Rightarrow\dfrac{x-241}{17}-1+\dfrac{x-220}{19}-2+\dfrac{x-195}{21}-3+\dfrac{x-166}{23}-4=0\)
\(\Rightarrow\dfrac{x-258}{17}+\dfrac{x-258}{19}+\dfrac{x-258}{21}+\dfrac{x-258}{23}=0\)
\(\Rightarrow\left(x-258\right)\left(\dfrac{1}{17}+\dfrac{1}{19}+\dfrac{1}{21}+\dfrac{1}{23}\right)=0\)
Mà \(\dfrac{1}{17}+\dfrac{1}{19}+\dfrac{1}{21}+\dfrac{1}{23}\ne0\)
\(\Rightarrow x-258=0\Rightarrow x=258\)
Vậy x = 258
x−24117+x−22019+x−19521+x−16623=10x−24117+x−22019+x−19521+x−16623=10
⇒x−24117−1+x−22019−2+x−19521−3+x−16623−4=0⇒x−24117−1+x−22019−2+x−19521−3+x−16623−4=0
⇒x−25817+x−25819+x−25821+x−25823=0⇒x−25817+x−25819+x−25821+x−25823=0
⇒(x−258)(117+119+121+123)=0⇒(x−258)(117+119+121+123)=0
Mà 117+119+121+123≠0117+119+121+123≠0
⇒x−258=0⇒x=258