Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x - 2)3 - (x - 3)(x2 + 3x + 9) + 6(x + 1)2 = 49
<=>x3-6x2+12x-8-(x3-27)+6(x2+2x+1)=49
<=>x3-6x2+12x-8-x3+27+6x2+12x+6=49
<=>24x+25=49
<=>24x=24
<=>x=1 x(x + 5)(x - 5) - (x + 2)(x2 - 2x + 4) = 42
<=>x(x2-25)-(x3+8)=42
<=>x3-25x-x3-8=42
<=>-25x-8=42
<=>-25x=50
<=>x=-2
\(\left(-3x-2\right)^2+\left(3x+5\right)\left(5-3x\right)=-7\)
\(\Leftrightarrow9x^2+12x+4+15x-9x^2+25-15x=-7\)
\(\Leftrightarrow12x+36=0\Leftrightarrow x=-3\)
\(\left(x+2\right)\left(x^2+2x+2\right)-x\left(x-8\right)^2=\left(4x-3\right)\left(4x+3\right)\)
\(\Leftrightarrow x^3+2x^2+2x+2x^2+4x+4-x\left(x^2-16x+64\right)=16x^2-9\)
\(\Leftrightarrow x^3+4x^2+6x+4-x^3+16x^2-64=16x^2-9\)
\(\Leftrightarrow4x^2+6x-51=0\)
\(\cdot\Delta=6^2-4.4.\left(-51\right)=852\)
Vậy pt có 2 nghiệm phân biệt
\(x_1=\frac{-6+\sqrt{852}}{8}\);\(x_2=\frac{-6-\sqrt{852}}{8}\)
a) = x3 + 9x2 + 27x + 27 - 9x3 -6x2 - x + 8x3 +1 -3x2 =54
26x +28 = 54
26x = 54-28 = 26
x = 1
b) = x3 - 9x2 + 27x -27 - x3 +27 +6x2 + 12x + 6 +3x2 = -33
39x +6 = -33
39x = -33-6 = -39
x = -1
\(a,\left(x-3\right)^2-4=0\)
\(\Leftrightarrow\left(x-3\right)^2=4\)
\(\Rightarrow x-3=\pm2\)
\(\hept{\begin{cases}x-3=2\Rightarrow x=5\\x-3=-2\Rightarrow x=1\end{cases}}\)
Vậy \(x=5\)hoặc \(x=1\)
\(b,x^2-2x=24\)
\(\Leftrightarrow x^2-2x+1-1=24\)
\(\Leftrightarrow\left(x-1\right)^2=24+1=25\)
\(\Leftrightarrow x-1=\pm5\)
\(\hept{\begin{cases}x-1=5\Rightarrow x=6\\x-1=-5\Rightarrow x=-4\end{cases}}\)
Vậy \(x=6\) hoặc \(x=-4\)
\(c,\left(2x+1\right)^2+\left(x+3\right)^2-5\left(x-7\right)\left(x+7\right)=0\)
\(\Leftrightarrow4x^2+4x+1+x^2+6x+9-5\left(x^2-49\right)=0\)
\(\Leftrightarrow4x^2+4x+1+x^2+6x+9-5x^2+245=0\)
\(\Leftrightarrow10x+255=0\)
\(\Leftrightarrow10x=-255\)
\(\Leftrightarrow x=\frac{-51}{2}\)
\(d,\left(x-3\right)\left(x^2+3x+9\right)+x\left(x+2\right)\left(2-x\right)=1\)
\(\Leftrightarrow x^3-27+x\left(2x-x^2+4-2x\right)=1\)
\(\Leftrightarrow x^3-27-x^3+4x=1\)
\(\Leftrightarrow4x-27=1\)
\(\Leftrightarrow4x=28\)
\(\Leftrightarrow x=7\)
\(a,\left(x+3\right).\left(x^2-3x+9\right)-\left(54+x^3\right)=x^3+27-54-x^3=-27.\)
\(b,8x^3+y^3-8x^3+y^3=2y^3\)
a/=> 9x2 - 6x + 1 - (9x2 + 12x + 4)=0 => 9x2 - 6x + 1 - 9x2 - 12x - 4 =0 => -18x - 3 =0 => -18x = 3 => x = -1/6 b/=>4x2 + 4x + 1 - (x2 - 2x + 1)=0 => 4x2 + 4x + 1 - x2 + 2x - 1 =0 => 3x2 + 6x =0 => 3x(x+2)=0 => trường hợp 1: 3x=0=>x=0 ; trường hợp 2: x+2=0=>x=-2 c/=> x2 - 2*2*x + 22=0 => (x - 2)2 =0 => x-2=0 => x=2 d/=> x2 - 2*5*x + 52 =0 => (x - 5)2 =0 => x-5=0 => x=5 e/=> 9x2 + 6x - 3 =0 => 9x2 - 3x + 9x - 3 =0 => 3x(3x - 1) + 3(3x - 1) =0 => (3x + 3)(3x - 1) =0 => trường hợp1: 3x+3=0 =>3x=-3=>x=-1 ; trường hợp2: 3x-1=0=>x=1/3
1: \(\Leftrightarrow5x^2+4x-1-2x^2+12x-18=3x^2+5x-2-x^2-8x-16+x^2-x\)
\(\Leftrightarrow3x^2+16x-19=3x^2-4x-18\)
=>20x=1
hay x=1/20
2: \(\Leftrightarrow5x^2-20x-41=x^2-10x+25+4x^2+4x+1-\left(x^2-2x\right)+\left(x-1\right)^2\)
\(\Leftrightarrow5x^2-20x-41=4x^2-4x+26+x^2-2x+1\)
\(\Leftrightarrow-20x-41=-6x+27\)
=>-14x=68
hay x=-34/7
\(\left(x+3\right)^3-x\left(3x+1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)=28\)
\(\Leftrightarrow x^3+9x^2+27x+27-9x^3-6x^2-x+8x^3+1=28\)
\(\Leftrightarrow3x^2+26x+28=28\)
\(\Leftrightarrow3x^2+26x=0\)\(\Leftrightarrow x\left(3x+26\right)=0\)
Suy ra x=0 hoặc x=-26/3
cho mk hỏi ngu tí là 6x^2 ở đâu thế ạ