Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho A= \(x-2x+2^2x-2^3x+2^4x-...+2^{2019}x=2^{2020}+1\)
\(x\left(1-2+2^2-2^3+...+2^{2019}\right)=2^{2020}+1\)
Đặt B= \(1-2+2^2-2^3+...+2^{2019}\)
2B= \(2-2^2+2^3-2^4+...+2^{2020}\)
2B+B= \(2^{2020}+1\)\(\Leftrightarrow B=\frac{2^{2020}+1}{3}\)
Thay B vào A, ta có:
A= \(\frac{\left(2^{2020}+1\right)x}{3}=2^{2020}+1\)
\(\Rightarrow\left(2^{2020}+1\right)x=\left(2^{2020}+1\right).3\)
\(\Rightarrow x=3\)
x - 2x + 22x - 23x + ... + 22018x - 22019x = 22020 + 1 (sửa lại đề vì để nguyên như thế dãy không đi theo quy luật với tất cả số)
=> x(1 - 2 + 22 - 23 + ... + 22018 - 22019) = 22020 + 1
Đặt A = 1 - 2 + 22 - 23 + ... + 22018 - 22019
=> 2A = 2 - 22 + 23 - 24 + ... + 22019 - 22020
Lấy 2A cộng A theo vế ta có :
2A + A = (2 - 22 + 23 - 24 + ... + 22019 - 22020) + (1 - 2 + 22 - 23 + ... + 22018 - 22019)
=> 3A = 22020 + 1
=> A = 22020 + 1 : 3
Khi đó (1) <=> x(22020 + 1) : 3 = 22020 + 1
=> x = 3
Vậy x = 3
1)\(2x^2+9y^2-6xy-6x-12y+2004\)
\(=x^2+x^2-6xy+9y^2-6x-12y+2004\)
\(=x^2+\left(x-3y\right)^2-10x+4x-12y+2004\)
\(=\left(x-3y\right)^2+4\left(x-3y\right)+x^2-10x+2004\)
\(=\left(x-3y\right)^2+4\left(x-3y\right)+x^2-10x+4+25+1975\)
\(=\left[\left(x-3y\right)^2+4\left(x-3y\right)+4\right]+\left(x^2-10x+25\right)+1975\)
\(=\left(x-3y+2\right)^2+\left(x-5\right)^2+1975\ge1975\)
Dấu "=" khi \(\begin{cases}\left(x-5\right)^2=0\\\left(x-3y+2\right)^2=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=5\\y=\frac{7}{3}\end{cases}\)
Vậy Min=1975 khi \(\begin{cases}x=5\\y=\frac{7}{3}\end{cases}\)
2)\(x\left(x+1\right)\left(x^2+x-4\right)=\left(x^2+x\right)\left(x^2+x-4\right)\)
Đặt \(t=x^2+x\) ta có:
\(t\left(t-4\right)=t^2-4t+4-4\)
\(=\left(t-2\right)^2-4\ge-4\)
Dấu "=" khi \(t-2=0\Leftrightarrow t=2\Leftrightarrow x^2+x=2\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-2\\x=1\end{array}\right.\)
Vậy Min=-4 khi \(\left[\begin{array}{nghiempt}x=-2\\x=1\end{array}\right.\)
3)\(\left(x^2+5x+5\right)\left[\left(x+2\right)\left(x+3\right)+1\right]\)
\(=\left(x^2+5x+5\right)\left[x^2+5x+6+1\right]\)
Đặt \(t=x^2+5x+5\) ta có:
\(t\left(t+1\right)=t^2+t+\frac{1}{4}-\frac{1}{4}=\left(t+\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)
Dấu "=" khi \(t+\frac{1}{2}=0\Leftrightarrow t=-\frac{1}{2}\Leftrightarrow x^2+5x+5=-\frac{1}{2}\)\(\Leftrightarrow x_{1,2}=\frac{-10\pm\sqrt{12}}{4}\)
Vậy Min=\(-\frac{1}{4}\) khi \(x_{1,2}=\frac{-10\pm\sqrt{12}}{4}\)
4)\(\left(x-1\right)\left(x-3\right)\left(x^2-4x+5\right)\)
\(=\left(x^2-4x+3\right)\left(x^2-4x+5\right)\)
Đặt \(t=x^2-4x+3\) ta có:
\(t\left(t+2\right)=t^2+2t+1-1=\left(t+1\right)^2-1\ge-1\)
Dấu "=" khi \(t+1=0\Leftrightarrow t=-1\Leftrightarrow x^2-4x+3=-1\Leftrightarrow x=2\)
Vậy Min=-1 khi x=2
x - 2x + 22x - 23x + 24x -.....+ 22006x - 22007x = 22008 - 1
x(1 - 2 + 22 - 23 + 24 -....+ 22006 - 22007) = 22008 - 1
Đặt M = 1 - 2 + 22 - 23 + 24 -....+ 22006 - 22007
2M = 2 - 22 + 23 - 24 + 25 -....+ 22007 - 22008
3M = 2M + M = 1 - 22008
=> M = \(\frac{1-2^{2008}}{3}\)
=> x . \(\frac{1-2^{2008}}{3}\) = 22008 - 1
=> x = (22008 - 1)\(\frac{1-2^{2008}}{3}\)
Đến đây chịu
\(A=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)...\left(\frac{1}{2004}-1\right)\left(\frac{1}{2005}-1\right)\)
\(=\left(-\frac{1}{2}\right)\times\left(-\frac{2}{3}\right)\times...\times\left(-\frac{2003}{2004}\right)\times\left(-\frac{2004}{2005}\right)\)
\(=\frac{1}{2005}\)
***
\(\frac{4x}{2x-\frac{1}{5}}>0\)
\(\Leftrightarrow\begin{cases}4x>0\\2x-\frac{1}{5}>0\end{cases}\)
\(\Leftrightarrow\begin{cases}x>0\\x>\frac{1}{10}\end{cases}\)
\(\Leftrightarrow x>\frac{1}{10}\)
a) Ta có: \(5x^2-3x\left(x+2\right)\)
\(=5x^2-3x^2-6x\)
\(=2x^2-6x\)
b) Ta có: \(3x\left(x-5\right)-5x\left(x+7\right)\)
\(=3x^2-15x-5x^2-35x\)
\(=-2x^2-50x\)
c) Ta có: \(3x^2y\left(2x^2-y\right)-2x^2\left(2x^2y-y^2\right)\)
\(=3x^2y\left(2x^2-y\right)-2x^2y\left(2x^2-y\right)\)
\(=x^2y\left(2x^2-y\right)=2x^4y-x^2y^2\)
d) Ta có: \(3x^2\left(2y-1\right)-\left[2x^2\cdot\left(5y-3\right)-2x\left(x-1\right)\right]\)
\(=6x^2y-3x^2-\left[10x^2y-6x^2-2x^2+2x\right]\)
\(=6x^2y-3x^2-10x^2y+6x^2+2x^2-2x\)
\(=-4x^2y+5x^2-2x\)
e) Ta có: \(4x\left(x^3-4x^2\right)+2x\left(2x^3-x^2+7x\right)\)
\(=4x^4-16x^3+4x^4-2x^3+14x^2\)
\(=8x^4-18x^3+14x^2\)
f) Ta có: \(25x-4\left(3x-1\right)+7x\left(5-2x^2\right)\)
\(=25x-12x+4+35x-14x^3\)
\(=-14x^3+48x+4\)
a)
\(A=\left(x+3\right)\left(x^2-3x+9\right)-\left(54+x^3\right)\)
\(=x^3-3x^2+9x+3x^2-9x+27-54-x^3\)
\(=-27\)
or
\(A=x^3+27-54-x^3=-27\)
b)
\(B=\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(=8x^3+y^3-8x^3+y^3=2y^3\)
c)
\(C=\left(2x+1\right)^2+\left(1-3x\right)^2+2\left(2x+1\right)\left(3x-1\right)\)
\(=\left(2x+1+3x-1\right)^2=\left(5x\right)^2=25x^2\)
d)
\(D=\left(x-2\right)\left(x^2+2x+4\right)-\left(x+1\right)^3+3\left(x-1\right)\left(x+1\right)\)
\(=x^3-8-\left(x-1\right)^3+3\left(x-1\right)\left(x+1\right)\)
\(=6x^2-3x-10\)