K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2017

\(x-2\sqrt{x}=0\)

\(\sqrt{x}\left(\sqrt{x}-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x}-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\\sqrt{x}=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)

       vậy \(\orbr{\begin{cases}x=0\\x=4\end{cases}}\)

15 tháng 10 2017

\(x-2\sqrt{x}=0\Rightarrow x=4\)

\(x=\frac{8}{\sqrt{x}}\Rightarrow x=4\)

15 tháng 2 2019

a, |x - 1,7| = 2,3

=> x - 1,7 = 2,3 hoặc x - 1,7 = -2,3

=> x = 4 hoặc x = -0,6

câu b tương tự câu a

c, |x - 1| = 2x - 3

=> x - 1 = 2x - 3 hoặc x - 1 =  3 - 2x

=> x - 2x = -3 + 1 hoặc x + 2x = 3 + 1

=> -x = -2 hoặc 3x = 4

=> x = 2 hoặc x = 4/3

15 tháng 2 2019

Cả Út: 

\(2x-3\ge0\Rightarrow2x\ge3\Rightarrow x\ge\frac{3}{2}\)

nên trường hợp 4/3 loại nha

5 tháng 10 2018

Bài 1 : 

\(a)\)\(A=\sqrt{23}+\sqrt{15}< \sqrt{25}+\sqrt{16}=5+4=9=\sqrt{81}< \sqrt{91}=B\)

Vậy \(A< B\)

\(b)\)\(A=\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10=\sqrt{100}>\sqrt{99}=B\)

Vậy \(A>B\)

Chúc bạn học tốt ~ 

5 tháng 10 2018

Bài 2 : 

\(a)\)\(A=\frac{3\sqrt{x}+3}{\sqrt{x}-2}=\frac{3\sqrt{x}-6}{\sqrt{x}-2}+\frac{9}{\sqrt{x}-2}=\frac{3\left(\sqrt{x}-2\right)}{\sqrt{x}-2}+\frac{9}{\sqrt{x}-2}=3+\frac{9}{\sqrt{x}-2}\)

Để A nguyên \(\Rightarrow\)\(9⋮\sqrt{x}-2\)\(\Rightarrow\)\(\sqrt{x}-2\inƯ\left(9\right)=\left\{1;-1;3;-3;9;-9\right\}\)

\(\sqrt{x}-2\)\(1\)\(-1\)\(3\)\(-3\)\(9\)\(-9\)
\(x\)\(9\)\(1\)\(25\)\(\varnothing\)\(121\)\(\varnothing\)

Vậy để A nguyên thì \(x\in\left\{1;9;25;121\right\}\)

Mấy câu còn lại tương tự 

Chúc bạn học tốt ~ 

5 tháng 8 2019

Ta có: 2x + 3y + 5z - 119 = 0

=>  2x + 3y + 5z = 119

 \(\frac{x+2}{3}=\frac{y+3}{5}=\frac{z-4}{7}\Leftrightarrow\frac{2x+4}{6}=\frac{3y+9}{15}=\frac{5z-20}{35}\)

Áp dụng t/c dãy tỉ số bằng nhau, ta có:

\(\frac{2x+4}{6}=\frac{3y+9}{15}=\frac{5z-20}{35}=\frac{2x+4+3y+9+5z-20}{6+15+35}=\frac{119+4+9-20}{56}=\frac{112}{56}=2\)

\(\Rightarrow\hept{\begin{cases}\frac{x+2}{3}=2\\\frac{y+3}{5}=2\\\frac{z-4}{7}=2\end{cases}\Rightarrow}\hept{\begin{cases}x+2=6\\y+3=10\\z-4=14\end{cases}}\Rightarrow\hept{\begin{cases}x=4\\y=7\\z=18\end{cases}}\)

Vậy...

15 tháng 2 2019

a) |x - 1,7| = 2,3

Xét 2 trường hợp:

TH1: x - 1,7 = -2,3

         x         = -2,3 +1,7

         x         = -0,6

TH2: x - 1,7 = 2,3

         x         = 2,3 + 1,7

         x         = 4

Vậy: Tự kl :<

15 tháng 2 2019

c)

+)x<1=>/x-1/=1-x=2x-3=>1-x-(2x-3)=0=>4-3x=0=>x=4/3 (loại)

+)x>=1=>x-1=2x-3=>2x-x-3+1=0=>x-2=0=>x=2(t/m)

Vậy: x=2 haizz

7 tháng 3 2021

Ta có \(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{xz}{x+z}\)

=> \(\frac{xyz}{xz+yz}=\frac{xyz}{xy+xz}=\frac{xyz}{xy+yz}\)

=> \(xz+yz=xy+xz=xy+yz\)(vì x ; y ;z \(\ne0\Leftrightarrow xyz\ne0\))

=> \(\hept{\begin{cases}xz+yz=xy+xz\\xy+xz=xy+yz\\xz+yz=xy+yz\end{cases}}\Rightarrow\hept{\begin{cases}yz=xy\\xz=yz\\xz=xy\end{cases}}\Rightarrow\hept{\begin{cases}z=x\\x=y\\y=z\end{cases}}\Rightarrow x=y=z\)

Khi đó M = \(\frac{x^2+y^2+z^2}{xy+yz+zx}=\frac{x^2+y^2+z^2}{x^2+y^2+z^2}=1\left(\text{vì }x=y=z\right)\)

30 tháng 12 2018

\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)

\(\Leftrightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)

\(\Leftrightarrow\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)\)

Dễ thấy: \(\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)\ne0\Rightarrow x+2004=0\Leftrightarrow x=-2014\)

30 tháng 12 2018

x = -2014

ti-ck nha

.........