Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
1. \(\left(x-1\right)\left(x+2\right)+5x-5=0\)
\(\Rightarrow\left(x-1\right)\left(x+2\right)+5\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(x+2+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x+7=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-7\end{matrix}\right.\)
Vậy.......................
2. \(\left(3x+5\right)\left(x-3\right)-6x-10=0\)
\(\Rightarrow\left(3x+5\right)\left(x-3\right)-2\left(3x+5\right)=0\)
\(\Rightarrow\left(3x+5\right)\left(x-3-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}3x+5=0\\x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{5}{3}\\x=5\end{matrix}\right.\)
Vậy........................
3. \(\left(x-2\right)\left(2x+3\right)-7x^2+14x=0\)
\(\Rightarrow\left(x-2\right)\left(2x+3\right)-7x\left(x-2\right)=0\)
\(\Rightarrow\left(x-2\right)\left(2x+3-7x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\-5x+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{3}{5}\end{matrix}\right.\)
Vậy............................
4, 5 tương tự nhé bn!
bài 3
1 (x-1)(x+2)+5x-5=0
=>(x-1)(x+2)+(5x-5)=o
=>(x-1)(x+2)+5(x-1)=0
=>(x-1)(x+2+5)=0
=>(x-1)(x+7)=0
=>\(\left[{}\begin{matrix}x-1=0\\x+7=0\end{matrix}\right.\) =>\(\left[{}\begin{matrix}x=1\\x=-7\end{matrix}\right.\)
vậy x=1 hoặc x=-7
2. (3x+5)(x-3)-6x-10=0
=>(3x+5)(x-3)-(6x+10)=0
=>(3x+5)(x-3)-2(3x+5)=0
=>(3x+5)(x-3-2)=0
=>(3x+5)(x-5)=0
=>\(\left[{}\begin{matrix}3x+5=0\\x-5=0\end{matrix}\right.\)=>\(\left[{}\begin{matrix}x=-\dfrac{5}{3}\\x=5\end{matrix}\right.\)
a)<=>(x^2+x-3)(x^2+x-2)-12=(x-2)(x+3)(x^2+x+1)
TH1:=>x-2=0
=>x=2
TH2:x+3=0
=>x=-3
dựa vô bệt thức ta thấy
D<0=> phương trình ko có nghiệm thực
=>x=-3 hoặc 2
nhớ tick nhé
a, \(x\left(x-2\right)+x-2=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)
b, \(x^3+x^2+x+1=0\)
\(\Leftrightarrow x^2\left(x+1\right)+\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x^2+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-1\\x^2=-1\left(voly\right)\end{cases}\Leftrightarrow}x=-1\)
c, \(2\left(x+3\right)-x^2-3x=0\)
\(\Leftrightarrow2\left(x+3\right)-x\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(2-x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\2-x=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-3\\x=2\end{cases}}\)
d, \(2x\left(3x-5\right)=10-6x\)
\(\Leftrightarrow6x^2-10x-10+6x=0\)
\(\Leftrightarrow\left(6x^2+6x\right)-\left(10x+10\right)=0\)
\(\Leftrightarrow6x\left(x+1\right)-10\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(6x-10\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\6x-10=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\6x=10\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-1\\x=\frac{5}{3}\end{cases}}\)
Bài 1:
a) \(A=x^2-6x+20=\left(x^2-2.x.3+3^2\right)+11\)
\(=\left(x-3\right)^2+11\ge11\)
Vậy minA=11,dấu bằng xảy ra khi (x-3)2=0 <=>x=3
b)\(B=2x^2-6x=2\left(x^2-3x\right)=2\left(x^2-2.x.\frac{3}{2}+\frac{9}{4}\right)-2.\frac{9}{4}\)
\(=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge\frac{-9}{2}\)
Vậy.............................................................................
Bài 2:
a)\(\left(x-2\right)^2-9=0\)
\(\Leftrightarrow\left(x-2\right)^2-3^2=0\)
\(\Leftrightarrow\left(x-2-3\right)\left(x-2+3\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=-1\end{cases}}}\)
b)\(\left(x+2\right)^2-\left(x-1\right)^2=6\)
\(\Leftrightarrow\left(x+2-x+1\right)\left(x+2+x-1\right)-6=0\)
\(\Leftrightarrow3\left(2x-1\right)-6=0\)
\(\Leftrightarrow3\left(2x-1-2\right)=0\)
\(\Leftrightarrow2x-3=0\Leftrightarrow x=\frac{2}{3}\)
c)\(\left(x+2\right)^2-x^2+4=0\)
\(\Leftrightarrow\left(x+2\right)^2-\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x+2\right)^2-\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+2-x+2\right)=0\)
\(\Leftrightarrow4\left(x+2\right)=0\)
\(\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
Xong rồi đấy,chúc bạn học tốt
a) \(3x^3-6x^2=0\)
\(3x^2\left(x-2\right)=0\)
\(\orbr{\begin{cases}3x^2=0\\x-2=0\end{cases}}\)
\(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
b) \(x\left(x-4\right)-12x+48=0\)
\(x^2-4x-12x+48=0\)
\(x^2-16x+48=0\)
\(\left(x-12\right)\left(x-4\right)=0\)
\(\orbr{\begin{cases}x-12=0\\x-4=0\end{cases}}\)
\(\orbr{\begin{cases}x=12\\x=4\end{cases}}\)
c) Viết thiếu nha :v
d) \(2x\left(x-5\right)-x\left(2x+3\right)=16\)
\(2x^2-10x-x^2-2x^2-3x=16\)
\(-13x=16\)
\(x=-\frac{16}{13}\)
e) \(\left(4x^2-1\right)-\left(x-1\right)^2=-3\)
\(4x^2-1-x^2+2x-1=-3\)
\(3x^2-2+2x=-3\)
\(3x^2-2+2x+3=0\)
\(3x^2+1+2x=0\)
Vì \(3x^2+1+2x>0\)nên:
\(x\in\varnothing\)
A) 3x3 - 6x2 = 0
=> 3x2(x - 2) = 0
=> \(\orbr{\begin{cases}3x^2=0\\x-2=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
b) x(x - 4) - 12x + 48 = 0
=> x(x - 4) - 12(x - 4) = 0
=> (x - 12)(x - 4) = 0
=> \(\orbr{\begin{cases}x-12=0\\x-4=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=12\\x=4\end{cases}}\)
c) x(x - 4) - (x2 - 8) = x2 - 4x - x2 + 8 = 4x + 8
a. x.(x+3)-x2+15=0
=> x^2 + 3x - x^2 + 15 = 0
=> 3x + 15 = 0
=> 3x = -15
=> x = -5
vậy_
b. (2x-1)(x+3) - x(2x-6) =15
=> 2x^2 + 6x - x - 3 - 2x^2 + 6x = 15
=> x - 3 = 15
=> x = 18
vậy_
c. x3 -36x = 0
=> x(x^2 - 36) = 0
=> x = 0 hoặc x^2 - 36 = 0
=> x = 0 hoặc x^2 = 36
=> x = 0 hoặc x = 6 hoặc x = -6
vậy_
d. 6x2 + 6x =x2+2x+1
=> 6x(x + 1) = (x + 1)^2
=> 6x(x + 1) - (x + 1)^2 = 0
=> (x + 1)(6x - x - 1) = 0
=> (x + 1)(5x - 1) = 0
=> x = -1 hoặc 5x = 1
=> x = -1 hoặc x = 1/5
vậy_
e. x(3x+1)=1-9x2
=> x(3x + 1) = (1 - 3x)(1 + 3x)
=> x(3x + 1) - (1 - 3x)(1 + 3x) = 0
=> (3x + 1)(x - 1 + 3x) = 0
=> (3x + 1)(4x - 1) = 0
=> 3x + 1 = 0 hoặc 4x - 1 = 0
=> 3x = -1 hoặc 4x = 1
=> x = -1/3 hoặc x = 1/4
vậy_
a) \(x\left(x+4\right)-x^2-6x=10\)
\(\Leftrightarrow x^2+4x-x^2-6x=10\)
\(\Leftrightarrow-2x=10\)
\(\Leftrightarrow x=-5\)
Vậy \(x=-5\)
b) \(x\left(x-1\right)+2x-2=0\)
\(\Leftrightarrow x\left(x-1\right)+2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)
Vậy \(x=1\)hoặc \(x=-2\)
thanks nobita nha