Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x3 + 3x2 + 3x + 1 = 64
=> (x + 1)3 = 64
=> (x + 1)3 = 43
=> x + 1 = 4 => x = 3
b) x3 + 6x2 + 9x = 4x
=> x3 + 6x2 + 9x - 4x = 0
=> x3 + 6x2 + 5x = 0
=> x3 + 5x2 + x2 + 5x = 0
=> x2(x + 5) + x(x + 5) = 0
=> (x + 5)(x2 + x) = 0
=> (x + 5)x(x + 1) = 0
=> \(\hept{\begin{cases}x=-5\\x=0\\x=-1\end{cases}}\)
c) 4(x - 2)2 = (x + 2)2
=> 4(x2 - 4x + 4) = x2 + 4x + 4
=> 4x2 - 16x + 16 = x2 + 4x + 4
=> 4x2 - 16x + 16 - x2 - 4x - 4 = 0
=> 3x2 - 20x + 12 = 0
=> 3x2 - 18x - 2x + 12 = 0
=> 3x(x - 6) - 2(x - 6) = 0
=> (x - 6)(3x - 2) = 0
=> \(\orbr{\begin{cases}x=6\\x=\frac{2}{3}\end{cases}}\)
d) x4 - 16x2 = 0
=> x2(x2 - 16) = 0
=> \(\orbr{\begin{cases}x^2=0\\x^2=16\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm4\end{cases}}\)
e) x4 - 4x3 + x2 - 4x = 0
=> x4 + x2 - 4x3 - 4x = 0
=> x2(x2 + 1) - 4x(x2 + 1) = 0
=> (x2 - 4x)(x2 + 1) = 0
=> x(x - 4)(x2 + 1) = 0
=> \(\orbr{\begin{cases}x=0\\x=4\end{cases}}\)(vì x2 + 1 \(\ge\)1 > 0 \(\forall\)x)
f) x3 + x = 0 => x(x2 + 1) = 0 => x = 0 (vì x2 + 1 \(\ge1>0\forall\)x)
f, 3x2+4x-4=0
\(\Leftrightarrow\)3x2+6x-2x-4=0
\(\Leftrightarrow\)3x(x+2)-2(x+2)=0
\(\Leftrightarrow\)(x+2)(3x-2)=0
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\3x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=-2\\x=\frac{2}{3}\end{matrix}\right.\left(tm\right)\)
Vậy pt có tập nghiệm S = \(\left\{-2;\frac{2}{3}\right\}\)
\(a,\)\(x^4-4x^3+4x^2=0\)
\(\Leftrightarrow x^2.\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow x^2.\left(x^2-2.x.2+2^2\right)=0\)
\(\Leftrightarrow x^2.\left(x-2\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\\left(x-2\right)^2=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
\(b,\)\(x^2+5x+4=0\)
\(\Leftrightarrow x^2+x+4x+4=0\)
\(\Leftrightarrow x.\left(x+1\right)+4.\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right).\left(x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+4=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-4\end{cases}}\)
\(c,\)\(9x-6x^2-3=0\)
\(\Leftrightarrow-3.\left(2x^2-3x+1\right)=0\)
\(\Leftrightarrow2x^2-3x+1=0\)
\(\Leftrightarrow2x^2-2x-x+1=0\)
\(\Leftrightarrow2x.\left(x-1\right)-\left(x-1\right)\)
\(\Leftrightarrow\left(x-1\right).\left(2x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\2x-1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=1\\2x=1\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{2}\end{cases}}\)
\(d,\)\(2x^2+5x+2=0\)
\(\Leftrightarrow2x^2+4x+x+2=0\)
\(\Leftrightarrow2x.\left(x+2\right)+\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right).\left(2x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\2x+1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=-2\\2x=-1\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-\frac{1}{2}\end{cases}}\)
a, x2 - 2x + 3 > 0
Xét : VT = x2 - 2x + 1 + 2 = ( x - 1 )2 + 2 .
Có : ( x - 1 )2 \(\ge\) 0 với mọi x \(\Rightarrow\) ( x - 1 )2 + 2 > 0 với mọi x hay
VT > 0 .
Vậy BĐT x2 - 2x + 3 > 0 đúng .
Các câu còn lại tương tự .
Chúc bn học tốt !!!!!!!!
f) \(4x^2-12x+9=0\)
<=> \(\left(2x-3\right)^2\) = 0
<=> \(2x-3=0\)
<=> \(2x=3\) <=> \(x=\dfrac{3}{2}\)
Vậy ...............
g) \(3x^2+7x+2=0\)
<=> \(\left(3x^2+6x\right)+\left(x+2\right)=0\)
<=> \(3x\left(x+2\right)+\left(x+2\right)=0\)
<=> \(\left(x+2\right)\left(3x+1\right)=0\)
<=> \(\left[{}\begin{matrix}x=-2\\x=\dfrac{-1}{3}\end{matrix}\right.\)
Vậy ........................
h) \(x^2-4x+1=0\)
<=> \(\left(x^2-4x+4\right)-3=0\)
<=> \(\left(x-2\right)^2=3\)
<=> \(\left[{}\begin{matrix}x+2=\sqrt{3}\\x+2=-\sqrt{3}\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=\sqrt{3}-2\\x=-\sqrt{3}-2\end{matrix}\right.\)
Vậy .........................
i) \(2x^2-6x+1=0\)
<=> \(2\left(x^2-3x+2,25\right)-3,5=0\)
<=> \(\left(x-1,5\right)^2=1,75\)
<=> \(\left[{}\begin{matrix}x-1,5=\sqrt{1,75}\\x-1,5=-\sqrt{1,75}\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=\sqrt{1,75}+1,5\\x=-\sqrt{1,75}+1,5\end{matrix}\right.\)
Vậy ...................
j) \(3x^2+4x-4=0\)
<=> \(\left(3x^2+6x\right)-\left(2x+4\right)=0\)
<=> \(3x\left(x+2\right)-2\left(x+2\right)\) = 0
<=> \(\left(x+2\right)\left(3x-2\right)=0\)
<=> \(\left[{}\begin{matrix}x=-2\\x=\dfrac{2}{3}\end{matrix}\right.\)
Vậy ....................................
f) \(4x^2-12x+9=0\)
\(\Rightarrow\left(2x-3\right)^2=0\)
\(\Rightarrow2x-3=0\)
\(\Rightarrow x=\dfrac{3}{2}\)
Vậy..
g) \(3x^2+7x+2=0\)
\(\Rightarrow3x^2+6x+x+2=0\)
\(\Rightarrow3x\left(x+2\right)+\left(x+2\right)=0\)
\(\Rightarrow\left(x+2\right)\left(3x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+2=0\\3x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{-1}{3}\end{matrix}\right.\)
Vậy..
h) \(x^2-4x+1=0\)
\(\Rightarrow x^2-4x+4-3=0\)
\(\Rightarrow\left(x-2\right)^2-3=0\)
\(\Rightarrow\left(x-2-\sqrt{3}\right)\left(x-2+\sqrt{3}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2-\sqrt{3}=0\\x-2+\sqrt{3}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2+\sqrt{3}\\x=2-\sqrt{3}\end{matrix}\right.\)
Vậy..
j) \(3x^2+4x-4=0\)
\(\Rightarrow3x^2+6x-2x-4=0\)
\(\Rightarrow3x\left(x+2\right)-2\left(x+2\right)=0\)
\(\Rightarrow\left(x+2\right)\left(3x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+2=0\\3x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{2}{3}\end{matrix}\right.\)
Vậy..
a. \(x^2+3x+5\)
\(=x^2+2.x^2.\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{11}{4}\)
\(=\left(x+\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)
=> đpcm
a) \(\Delta'=2^2-1=3>0\)=> pt có hai nghiệm phân biệt
\(x_1=2+\sqrt{3}\)
\(x_2=2+\sqrt{3}\)
b) \(x^2-2x-4x+8=0\)
\(\Leftrightarrow x\left(x-2\right)-4\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)
c)\(\Leftrightarrow3x^2+3x-x-1=0\)
\(\Leftrightarrow3x\left(x+1\right)-\left(x+1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{3}\\x=-1\end{matrix}\right.\)
d)\(4x^2-12x+5=0\)
\(\Leftrightarrow4x^2-2x-10x+5=0\)
\(\Leftrightarrow2x\left(2x-1\right)-5\left(2x-1\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{5}{2}\\x=\frac{1}{2}\end{matrix}\right.\)
a/ Sai đề à??
\(\left(2x^3-3\right)^2-\left(4x^2-9\right)=0\)
\(\Leftrightarrow4x^6-12x^3+9-4x^2+9=0\)
\(\Leftrightarrow4x^6-13x^2-4x^2+18=0\)
b/ \(\Leftrightarrow\left(x^2-3\right)\left(x^2+3\right)+2x\left(x^2-3\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\left(x^2+3+2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{3}\\x=-\sqrt{3}\end{matrix}\right.\) (do \(x^2+3+2x>0\forall x\))
d/ \(\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\)
\(\Leftrightarrow\left(2-x\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
a) \(x^2-64=0\)
\(\Leftrightarrow\left(x-8\right)\left(x+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-8\end{matrix}\right.\)
b) \(4x^2-4x+1=0\)
\(\Leftrightarrow\left(2x-1\right)^2=0\Leftrightarrow2x-1=0\)
\(\Leftrightarrow x=\dfrac{1}{2}\)
c) \(9-6x+x^2=0\)
\(\Leftrightarrow\left(x-3\right)^2=0\)
\(\Leftrightarrow x-3=0\Leftrightarrow x=3\)
a: Ta có: \(x^2-64=0\)
\(\Leftrightarrow\left(x-8\right)\left(x+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-8\end{matrix}\right.\)
b: Ta có: \(4x^2-4x+1=0\)
\(\Leftrightarrow\left(2x-1\right)^2=0\)
hay \(x=\dfrac{1}{2}\)
c: ta có: \(x^2-6x+9=0\)
\(\Leftrightarrow\left(x-3\right)^2=0\)
hay x=3