Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(4x^2-12x=-9\)
\(\Leftrightarrow4x^2-12x+9=0\)
\(\Leftrightarrow\left(2x-3\right)^2=0\)
\(\Leftrightarrow2x-3=0\Leftrightarrow x=\frac{3}{2}\)
b) \(\left(5-2x\right)\left(2x+7\right)=4x^2-25\)
\(\Leftrightarrow\left(5-2x\right)\left(2x+7\right)+\left(25-4x^2\right)=0\)
\(\Leftrightarrow\left(5-2x\right)\left(2x+7\right)+\left(5-2x\right)\left(5+2x\right)=0\)
\(\Leftrightarrow\left(5-2x\right)\left(2x+7+5+2x\right)=0\)
\(\Leftrightarrow\left(5-2x\right)\left(4x+12\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{5}{2}\\x=-3\end{array}\right.\)
c)\(x^3+27+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9+x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-2x\right)=0\)
\(\Leftrightarrow\left(x+3\right)x\left(x-2\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-3\\x=0\\x=2\end{array}\right.\)
d) \(4\left(2x+7\right)^2-9\left(x+3\right)^2=0\)
\(\Leftrightarrow\left[2\left(2x+7\right)-3\left(x+3\right)\right]\left[2\left(2x+7\right)+3\left(x+3\right)\right]=0\)
\(\Leftrightarrow\left(4x+14-3x-9\right)\left(4x+14+3x+9\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(7x+23\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-5\\x=-\frac{23}{17}\end{array}\right.\)
Bài 3:
a) \(\left(x-6\right).\left(2x-5\right).\left(3x+9\right)=0\)
\(\Leftrightarrow\left(x-6\right).\left(2x-5\right).3.\left(x+3\right)=0\)
Vì \(3\ne0.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\2x-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\2x=5\\x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\frac{5}{2}\\x=-3\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{6;\frac{5}{2};-3\right\}.\)
b) \(2x.\left(x-3\right)+5.\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right).\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\frac{5}{2}\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{3;-\frac{5}{2}\right\}.\)
c) \(\left(x^2-4\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x^2-2^2\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x+2\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x+2-3+2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{3}\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{2;\frac{1}{3}\right\}.\)
Chúc bạn học tốt!
Bài 1:
a) \(\left(2x+3\right)\cdot\left(4x^2-6x+9\right)-2\left(4x^3-1\right)\)
\(=8x^3-12x^2+18x+12x^2-18x+27-8x^3-3=27-3=24\)
--> đpcm
b) Sửa đề: \(\left(x+3\right)^3-\left(x+9\right)\left(x^2+27\right)\)
\(=x^3+9x^2+27x+27-\left(x^3+27x+9x^2+243\right)\)
\(=x^3+9x^2+27x+27-x^3-27x-9x^2-243=27-243=-216\)
--> đpcm
c) \(\left(x+y\right)\left(x^2-xy+y^2\right)+\left(x-y\right)\left(x^2+xy+y^2\right)-2x^3\)
\(=x^3+y^3+x^3-y^3-2x^3=2x^3-2x^3=0\)
--> đpcm
B1: a) \(\left(2x+3\right)\left(4x^2-6x+9\right)-2\left(4x^3-1\right)\)
\(=8x^3-27-8x^3+2\)
\(=-25\)
b) c) Làm theo câu a áp dụng HĐT.
B2:
a) \(\left(x+2\right)^2-9=0\)
\(\Rightarrow\left(x+2+3\right)\left(x+2-3\right)=0\)
\(\Rightarrow\left(x+5\right)\left(x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+5=0\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-5\\x=1\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=-5\\x=1\end{matrix}\right..\)
Mấy câu b,c,d bn chịu khó tạo HĐT nhé.
e) \(\Rightarrow4x^2-4x+1+x^2+6x+9-5x^2+245=0\)
\(\Rightarrow2x=-255\)
\(\Rightarrow x=-\dfrac{255}{2}\)
Vậy \(x=-\dfrac{255}{2}\)
Lần sau đăng thì chia thành nhiều câu hỏi nhé
\(16^2-9.\left(x+1\right)^2=0\)
\(16^2-\text{ }\left[3.\left(x+1\right)\right]^2=0\)
\(\left[16-3.\left(x+1\right)\right].\left[16+3\left(x+1\right)\right]=0\)
\(\left[16-3x-3\right]\left[16+3x+3\right]=0\)
\(\left[13-3x\right].\left[19+3x\right]=0\)
\(\Rightarrow\orbr{\begin{cases}13-3x=0\\19+3x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=13\\3x=-19\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{13}{3}\\x=-\frac{19}{3}\end{cases}}}\)
KL:..............................
a)\(\left(x-1\right)^3+3\left(x+1\right)^2=\left(x^2-2x+4\right)\left(x+2\right)\)
\(\Leftrightarrow x^3-3x^2+3x-1+3\left(x^2+2x+1\right)=x^3+8\)
\(\Leftrightarrow-3x^2+3x+3x^2+6x+3=9\)
\(\Leftrightarrow9x=6\Leftrightarrow x=\frac{2}{3}\)
b) \(x^2-4=8\left(x-2\right)\)
\(\Leftrightarrow x^2-4=8x-16\)
\(\Leftrightarrow x^2-8x+12=0\)
\(\Leftrightarrow x^2-2x-6x+12=0\)
\(\Leftrightarrow x\left(x-2\right)-6\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-6=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=6\\x=2\end{cases}}\)
c) \(x^2-4x+4=9\left(x-2\right)\)
\(\Leftrightarrow\left(x-2\right)^2=9\left(x-2\right)\)
\(\Leftrightarrow\left(x-2\right)^2-9\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-11\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x-11=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=11\end{cases}}\)
d) \(4x^2-12x+9=\left(5-x\right)^2\)
\(\Leftrightarrow\left(2x-3\right)^2=\left(5-x\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3=5-x\\2x-3=x-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{8}{3}\\x=-2\end{cases}}\)
a) \(\left(x+1\right)\left(2x-1\right)\left(-x+2\right)=0\)
\(\Leftrightarrow\left[\begin{matrix}x+1=0\\2x-1=0\\-x+2=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=-1\\x=\frac{1}{2}\\x=2\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là \(S=\left\{-1;\frac{1}{2};2\right\}\)
b) \(\left(2x-1\right)\left(3x+2\right)\left(4x-5\right)\left(x-7\right)=0\)
\(\Leftrightarrow\left[\begin{matrix}2x-1=0\\3x+2=0\\4x-5=0\\x-7=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=\frac{1}{2}\\x=-\frac{2}{3}\\x=\frac{5}{4}\\x=7\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là \(S=\left\{\frac{1}{2};-\frac{2}{3};\frac{5}{4};7\right\}\)
c) \(x^2-6x+11=0\)
\(\Leftrightarrow x^2-6x+9+2=0\)
\(\Leftrightarrow\left(x-3\right)^2+2=0\) (vô lí)
Vậy phương trình vô nghiệm
d) \(\left(x^2+2x+3\right)\left(x^2-25\right)\left(x+19\right)=0\)
\(\Leftrightarrow\left(x^2+2x+1+2\right)\left(x+5\right)\left(x-5\right)\left(x+19\right)=0\)
\(\Leftrightarrow\left[\left(x+1\right)^2+2\right]\left(x+5\right)\left(x-5\right)\left(x+19\right)=0\)
\(\Leftrightarrow\left[\begin{matrix}x+5=0\\x-5=0\\x+19=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=-5\\x=5\\x=-19\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là \(S=\left\{\pm5;-19\right\}\)
a,b,d dễ mà bạn tự làm
c,x2-6x+11=0<=> x2-6x+9+2=0
<=>(x-3)2=-2(vô lý)
vậy pt vô nghiệm
a) 4x2 - 12x + 9 = 0 <=> (2x - 3)2 = 0 <=> 2x - 3 = 0 <=> x = 3/2.KL
b) ( 5 - 2x )( 2x + 7 ) + ( 25 - 4x2 ) = 0 <=> ( 5 - 2x )( 2x + 7 ) + ( 5 + 2x )( 5 - 2x ) = 0 <=> ( 5 - 2x )( 2x + 7 + 5 + 2x ) = 0. KL
<=> ( 5 - 2x )( 4x + 12 ) = 0 <=>\(\orbr{\begin{cases}5-2x=0\\4x+12=0\end{cases}}\)
<=>\(\orbr{\begin{cases}x=2\frac{1}{2}\\x=-3\end{cases}}\)KL.
c) ( x + 3 )( x2 - 3x + 9 ) + ( x + 3 )( x - 3 ) = 0 <=> ( x + 3 )( x2 - 3x + 9 + x - 3 ) = 0 <=> ( x + 3 )( x2 -2x + 6 ) = 0 <=> x + 3 = 0 (vi x2 - 2x + 6 = ( x + 1 )2 + 5 > 0 voi moi x) KL
<=>x=-3.KL
d) [ 2 ( 2x + 7 ) ]2 - [ 3 ( x + 3 ) ]2 = 0 <=> ( 4x + 14 )2 - ( 3x + 9 )2 = 0 <=> ( 4x + 14 + 3x + 9 )( 4x + 14 - 3x -9 ) = 0
<=> ( 7x + 23 )( x + 5 ) = 0 <=> 7x + 23 = 0 hoac x + 5 = 0 <=> x = -23/7 hoac x = -5.KL