Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(8x-3)(3x+2)-(4x+7)(x+4) = (2x+1)(5x-1)-33
(24x2-9x+16x-6)-(4x2+7x+16x+28) = (10x2+5x-2x-1)-33
24x2+7x-6-4x2-23x-28 = 10x2+3x-1-33
20x2-16x-34 = 10x2+3x-34
<=> 20x2-16x = 10x2+3x
2x2-19x=0
2x(x-19)=0
=>\(\left[{}\begin{matrix}2x=0\Rightarrow x=0\\x-19=0\Rightarrow x=19\end{matrix}\right.\)
Không chắc lắm :)
ở trên đúng r, nhưng sai từ chỗ 2x^2 -19x=0, đáng lẽ phải là 10x^2 -19x =0 mới đúng
a) \(x\left(2x+1\right)-x^2\left(x+2\right)+\left(x^3-x+3\right)=3\)
\(\Leftrightarrow2x^2+x-x^3-2x^2+x^3-x+3=3\)
\(\Leftrightarrow3=3\)( Luôn đúng với mọi x )
Vậy phương trình nghiệm đúng với mọi x
b) \(4\left(x-6\right)-x^2\left(2+3x\right)+x\left(5x-4\right)+3x\left(x-1\right)=12x+12\)
\(\Leftrightarrow4x-24-2x^2-3x^3+5x^2-4x+3x^2-3x=12x+12\)
\(\Leftrightarrow-3x^3+6x^2-3x-24=12x+12\)
\(\Leftrightarrow-3x^3+6x^2-3x-24-12x-12=0\)
\(\Leftrightarrow-3x^3+6x^2-15x-36=0\)
Đến đây xem lại đề bạn nhớ :D Tìm thì tìm được nhưng thấy nó sai sai kiểu gì í
c) \(\left(3x+1\right)\left(x-2\right)=\left(2-x\right)\left(-3x-5\right)\)
\(\Leftrightarrow3x\left(x-2\right)+1\left(x-2\right)=2\left(-3x-5\right)-x\left(-3x-5\right)\)
\(\Leftrightarrow3x^2-6x+x-2=-6x-10+3x^2+5x\)
\(\Leftrightarrow3x^2-6x+x+6x-3x^2-5x=-10+2\)
\(\Leftrightarrow-4x=-8\)
\(\Leftrightarrow x=2\)
d) \(\left(x+3\right)\left(x+5\right)-x\left(x+7\right)=2x+8\)
\(\Leftrightarrow x\left(x+5\right)+3\left(x+5\right)-x\left(x+7\right)=2x+8\)
\(\Leftrightarrow x^2+5x+3x+15-x^2-7x=2x+8\)
\(\Leftrightarrow x^2+5x+3x-x^2-7x-2x=8-15\)
\(\Leftrightarrow-x=-7\)
\(\Leftrightarrow x=7\)
a, \(x\left(2x-1\right)-x^2\left(x+2\right)+\left(x^3-x+3\right)=3\)
\(\Leftrightarrow2x^2-x-x^3-2x^2+x^3-x+3=3\)
\(\Leftrightarrow-2x=0\Leftrightarrow x=0\)
b, \(4\left(x-6\right)-x^2\left(2+3x\right)+x\left(5x-4\right)+3x\left(x-1\right)=12x+12\)
\(\Leftrightarrow4x-24-2x^2-3x^3+5x^2-4x+3x^2-3x=12x+12\)
\(\Leftrightarrow-3x-24+6x^2-3x^3=12x+12\)
\(\Leftrightarrow-15x-36+6x^2-3x^3=0\)
Lớp 8 chưa hc vô tỉ đâu ... vô nghiệm
c, \(\left(3x+1\right)\left(x-2\right)=\left(2-x\right)\left(-3x-5\right)\)
\(\Leftrightarrow3x^2-5x-2=-x-10+3x^2\)
\(\Leftrightarrow-4x+8=0\Leftrightarrow x=2\)
d, \(\left(x+3\right)\left(x+5\right)-x\left(x+7\right)=2x+8\)
\(\Leftrightarrow x^2+8x+15-x^2-7x=2x+8\)
\(\Leftrightarrow x+15=2x+8\Leftrightarrow-x+7=0\Leftrightarrow x=7\)
\(2\left(x^2+8x+16\right)-x^2+4=0\)
\(\Leftrightarrow2x^2+16x+32-x^2+4=0\)
\(\Leftrightarrow x^2+16x+36=0\)
\(\Leftrightarrow x^2+16x+64=28\)
\(\Leftrightarrow\left(x+8\right)^2=28\)
\(\Leftrightarrow\orbr{\begin{cases}x_1=\sqrt{28}-8\\x_2=-\sqrt{28}-8\end{cases}}\)
\(2\left(x^2+8x+16\right)-x^2+4=0\)
\(2x^2+16x+32-x^2+4=0\)
\(x^2+16x+36=0\)
\(x^2+16x+64=28\)
\(\left(x+8\right)^2=28\)
bình phương thì chia lm 2 trường hợp
lm tiếp phần sau
Bài 1 :
Câu a : \(A=x^2-3x+5=\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{11}{4}=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}>0\)
Câu b : \(A=x^2-3x+5=\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{11}{4}=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)
Vậy \(GTNN\) của \(A\) là \(\dfrac{11}{4}\) . Dấu \("="\) xảy ra khi \(\left(x-\dfrac{3}{2}\right)^2=0\Leftrightarrow x=\dfrac{3}{2}\)
Bài 2 :
Câu a : \(x^2-6x+y^2-4y+13=0\)
\(\Leftrightarrow\left(x^2-6x+9\right)+\left(y^2-4y+4\right)=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(y-2\right)^2=0\)
Do : \(\left(x-3\right)^2\ge0\) and \(\left(y-2\right)^2\ge0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-3\right)^2=0\\\left(y-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)
Vậy \(x=3\) and \(y=2\)
Câu b : \(4x^2-4x+y^2+6y+10=0\)
\(\Leftrightarrow\left(4x^2-4x+1\right)+\left(y^2+6y+9\right)=0\)
\(\Leftrightarrow\left(2x-1\right)^2+\left(y+3\right)^2=0\)
Because the : \(\left(2x-1\right)^2\ge0\) and \(\left(y+3\right)^2\ge0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(2x-1\right)^2=0\\\left(y+3\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)
Vậy \(x=\dfrac{1}{2}\) và \(y=-3\)
\(\Leftrightarrow4\left(x^2+x-2\right)-\left(4x^2+11x-3\right)=2x-2\)
\(\Leftrightarrow4x^2+4x-8-4x^2-11x+3=2x-2\)
=>-7x-5=2x-2
=>-9x=3
hay x=-1/3
a, -5x^2 - x + 6 = 0
<=> -5x^2 - x -5 -1 =0
<=> (-5x^2-5)-(x+1)=0
<=> -5(x^2-1)-(x+1)=0
<=> -5(x-1)(x+1)-(x+1)=0
<=> (x+1)(-5x+5-1)=0
<=> (x+1)(-5x+4)=o
<=> x+1=0 hoặc -5x+4=0
*) x+1=0<=>x=-1
*) -5x+4=0<=> x=4/5
b) 4x^2+x-5= 0
<=> 4x^2 - 4 +x-1=0
<=> 4(x^2-1)+(x-1)=0
<=> 4(x-1)(x+1)+(x-1)=0
<=>(x-1)(4x+4+1)=0
<=>(x-1)(4x+5)=0
<=> x-1=0 hoặc 4x+5=0
+) x-1=0<=> x=1
+)4x+5=0<=>x=-5/4
...cách làm .. ptđt thành nhân tử
.giải .... >>
a . \(-5x^2-x+6=0\)
<=> (-5x^2 +5x ) - ( 6x-6)=0 <=> -5x(x-5) -6 (x-1) =0 <=> (x-1)(-5x-6/5)=0 <=> x=1 hoặc x =-6/5
b.<=> 4x^2-4x +5x-5 = 0 <=.> 4x(x-1) +5 (x-1) <=> (x-1)(4x+5)=0 <=> x= 1 hoặc x= -5/4
...... chuẩn ko cần chỉnh .. check liền tay ..The end•••