Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A. \(4\left(x+2\right)-7\left(2x-1\right)+9\left(3x-4\right)=30\)
\(\Leftrightarrow4x+8-14x+7+27x-36=30\)
\(\Leftrightarrow4x-14x+27x=30-8-7+36\)
\(\Leftrightarrow17x=51\)
\(\Leftrightarrow x=3\) . Vậy \(S=\left\{3\right\}\)
B. \(2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\)
\(\Leftrightarrow10x-16-12x+15=12x-16+11\)
\(\Leftrightarrow10x-12x-12x=16-15-16+11\)
\(\Leftrightarrow10x=-4\)
\(\Leftrightarrow x=-\dfrac{2}{5}\) . Vậy \(S=\left\{-\dfrac{2}{5}\right\}\)
Câu C) bạn xem lại đề nha mik tính ko đc
D. \(\left(5x-3\right)4x-2x\left(10x-3\right)=15\)
\(\Leftrightarrow20x^2-12x-20x^2+6x=15\)
\(\Leftrightarrow-6x=15\)
\(\Leftrightarrow x=-\dfrac{5}{2}\) . Vậy \(S=\left\{-\dfrac{5}{2}\right\}\)
\(\left(4-3x\right)\left(10x-5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}4-3x=0\\10x-5=0\end{cases}\Rightarrow\orbr{\begin{cases}3x=4\\10x=5\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{4}{3}\\x=\frac{1}{2}\end{cases}}}\)
\(\left(7-2x\right)\left(4+8x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}7-2x=0\\4+8x=0\end{cases}\Rightarrow\orbr{\begin{cases}2x=7\\8x=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=-\frac{1}{2}\end{cases}}}}\)
rồi thực hiện đến hết ...
Brainchild bé ngây thơ qus e , ko thực hiện đến hết như thế đc đâu :>
\(\left(x-3\right)\left(2x-1\right)=\left(2x-1\right)\left(2x+3\right)\)
\(2x^2-7x+3=4x^2+4x-3\)
\(2x^2-7x+3-4x^2-4x+3=0\)
\(-2x^2-11x+6=0\)
\(2x^2+11x-6=0\)
\(2x^2+12x-x-6=0\)
\(2x\left(x+6\right)-\left(x+6\right)=0\)
\(\left(x+6\right)\left(2x-1\right)=0\)
\(x+6=0\Leftrightarrow x=-6\)
\(2x-1=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)
\(3x-2x^2=0\)
\(x\left(2x-3\right)=0\)
\(x=0\)
\(2x-3=0\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)
Tự lm tiếp nha
a)4(x+2)-7(2x-1)+9(3x-4)=30 b)2(5x-8)-3(4x-5)=4(3x-4)+11
<=>4x+8-14x+7+27x-36=30 <=>10x-16-12x+15=12x-16+11
<=>17x-21=30 <=> -14x=-4 <=>x=2/7
<=>17x=51
<=>x=3
\(a,\left(x+8\right)\left(x+6\right)-x^2=104\)
\(\Rightarrow x^2+14x+48-x^2=104\)
\(\Rightarrow14x=56\)
\(\Rightarrow x=4\)
Vậy x=4
Bài 1:
a) (3x - 2)(4x + 5) = 0
<=> 3x - 2 = 0 hoặc 4x + 5 = 0
<=> 3x = 2 hoặc 4x = -5
<=> x = 2/3 hoặc x = -5/4
b) (2,3x - 6,9)(0,1x + 2) = 0
<=> 2,3x - 6,9 = 0 hoặc 0,1x + 2 = 0
<=> 2,3x = 6,9 hoặc 0,1x = -2
<=> x = 3 hoặc x = -20
c) (4x + 2)(x^2 + 1) = 0
<=> 4x + 2 = 0 hoặc x^2 + 1 # 0
<=> 4x = -2
<=> x = -2/4 = -1/2
d) (2x + 7)(x - 5)(5x + 1) = 0
<=> 2x + 7 = 0 hoặc x - 5 = 0 hoặc 5x + 1 = 0
<=> 2x = -7 hoặc x = 5 hoặc 5x = -1
<=> x = -7/2 hoặc x = 5 hoặc x = -1/5
\(a,\left(2x-1\right)^2=49\)
\(\left[{}\begin{matrix}2x-1=7\\2x-1=-7\end{matrix}\right.\)
\(\left[{}\begin{matrix}2x=8\\2x=-6\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)
\(b,\left(2x+7\right)^2=9\left(x+2\right)^2\)
\(4x^2+28x+49=9x^2+36x+36\)
\(4x^2+28x+49-9x^2-36x-36=0\)
\(-5x^2-8x+13=0\)
\(5x^2+13-5x-13=0\)
\(x\left(5x+13\right)-1\left(5x+13\right)=0\)
\(\left(x-1\right)\left(5x+13\right)=0\)
\(\left[{}\begin{matrix}x=1\\5x=-13\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=1\\x=-\frac{13}{5}\end{matrix}\right.\)
\(c,4\left(2x+7\right)^2-9\left(x+3\right)^2=0\)
\(\left[2\left(2x+7\right)\right]^2-\left[3\left(x+3\right)\right]^2=0\)
\(\left(4x+14\right)^2-\left(3x+9\right)^2=0\)
\(4\left(2x+7\right)^2-9\left(x+3\right)^2=0\)
\(x=-5\)
\(d,\left(5x-3\right)^2-\left(4x-7\right)^2=0\)
\(25x^2-30x+9-16x^2+56x-49=0\)
\(9x^2+26x-40=0\)
\(9x^2+36x-10x-40=0\)
\(9x\left(x+4\right)-10\left(x+4\right)=0\)
\(\left(9x-10\right)\left(x+4\right)=0\)
\(\left[{}\begin{matrix}9x-10=0\\x+4=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\frac{10}{9}\\x=-4\end{matrix}\right.\)
1) \(\left(5x-4\right)\left(4x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-4=0\\4x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=4\\4x=6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm S = \(\left\{\dfrac{4}{5};\dfrac{3}{2}\right\}\)
2) \(\left(4x-10\right)\left(24+5x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-10=0\\24+5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=10\\5x=-24\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{-24}{5}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm S = \(\left\{\dfrac{5}{2};\dfrac{-24}{5}\right\}\)
3) \(\left(x-3\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{-1}{2}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm S = \(\left\{3;\dfrac{-1}{2}\right\}\)
a: Ta có: \(4\left(2x+7\right)^2-9\left(x+3\right)^2=0\)
\(\Leftrightarrow\left(4x+14-3x-9\right)\left(4x+14+3x+9\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(7x+23\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-\dfrac{23}{7}\end{matrix}\right.\)
c: Ta có: \(\left(x-3\right)^2-4=0\)
\(\Leftrightarrow\left(x-5\right)\cdot\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\)
b.
PT $\Leftrightarrow (5x^2-2x+10)^2-(3x^2+10x-8)^2=0$
$\Leftrightarrow (5x^2-2x+10-3x^2-10x+8)(5x^2-2x+10+3x^2+10x-8)=0$
$\Leftrightarrow (2x^2-12x+18)(8x^2+8x+2)=0$
$\Leftrightarrow (x^2-6x+9)(4x^2+4x+1)=0$
$\Leftrightarrow (x-3)^2(2x+1)^2=0$
$\Leftrightarrow (x-3)(2x+1)=0$
$\Leftrightarrow x-3=0$ hoặc $2x+1=0$
$\Leftrightarrow x=3$ hoặc $x=-\frac{1}{2}$
d.
$x^2-2x=24$
$\Leftrightarrow x^2-2x-24=0$
$\Leftrightarrow (x+4)(x-6)=0$
$\Leftrightarrow x+4=0$ hoặc $x-6=0$
$\Leftrightarrow x=-4$ hoặc $x=6$