K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2018

\(b)\) \(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{97.101}=\frac{2x+4}{101}\)

\(\Leftrightarrow\)\(\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{97}-\frac{1}{101}=\frac{2x+4}{101}\)

\(\Leftrightarrow\)\(1-\frac{1}{101}=\frac{2x+4}{101}\)

\(\Leftrightarrow\)\(\frac{100}{101}=\frac{2x+4}{101}\)

\(\Leftrightarrow\)\(100=2x+4\)

\(\Leftrightarrow\)\(2x=96\)

\(\Leftrightarrow\)\(48\)

Vậy \(x=48\)

Chúc bạn học tốt ~ 

9 tháng 4 2018

\(a)\) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{47.49}=\frac{24}{x+1}\)

\(\Leftrightarrow\)\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{47.49}=\frac{48}{x+1}\)

\(\Leftrightarrow\)\(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{47}-\frac{1}{49}=\frac{48}{x+1}\)

\(\Leftrightarrow\)\(1-\frac{1}{49}=\frac{48}{x+1}\)

\(\Leftrightarrow\)\(\frac{48}{49}=\frac{48}{x+1}\)

\(\Leftrightarrow\)\(49=x+1\)

\(\Leftrightarrow\)\(x=48\)

Vậy \(x=48\)

Chúc bạn học tốt ~ 

24 tháng 3 2018

A có tổng cộng 49 số hạng, nhóm 2 số hạng liên tiếp với nhau được: 

\(A=\left(\frac{1}{1.3}-\frac{2}{3.5}\right)+\left(\frac{3}{5.7}-\frac{4}{7.9}\right)+...+\left(\frac{47}{93.95}-\frac{48}{95.97}\right)+\frac{49}{97.99}\)

\(A=\frac{1}{1.5}+\frac{1}{5.9}+...+\frac{1}{93.97}+\frac{49}{97.99}\)=> \(4A=\frac{4}{1.5}+\frac{4}{5.9}+...+\frac{4}{93.97}+\frac{196}{97.99}=\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+...+\frac{1}{93}-\frac{1}{97}+\frac{196}{97.99}\)

=> \(4A=1-\frac{1}{97}+\frac{196}{97.99}=\frac{96}{97}+\frac{196}{97.99}=\frac{9700}{97.99}=\frac{100}{99}>1\)

\(4A>1=>A>\frac{1}{4}\)

24 tháng 3 2018

Bn trừ 2 PS kiểu gì hay zậy? 

Giúp mình nhá

7 tháng 6 2020

1/2(2/3.5+2/5.7+2/7.9+...+2/(2x+1)(2x+3))=15/93

1/2(1/3-1/5+1/5-1/7+1/7-1/9+...+1/2x+1-1/2x+3)=15/93

1/2(1/3-1/2x+3)=15/93

=>1/3-1/2x+3=10/31

=>1/2x+3=1/93

=>2x+3=93

2x=93-3=90

=>x=45

7 tháng 6 2020

Đặt \(A=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{\left(2x+1\right)\left(2x+3\right)}=\frac{15}{93}\)

\(\Rightarrow2A=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{\left(2x+1\right)\left(2x+3\right)}=\frac{10}{31}\)

\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2x+1}-\frac{1}{2x+3}=\frac{10}{31}\)

\(\frac{1}{3}-\frac{1}{2x+3}=\frac{10}{31}\)

\(\frac{1}{2x+3}=\frac{1}{3}-\frac{10}{31}\)

\(\frac{1}{2x+3}=\frac{1}{93}\)

\(\Rightarrow2x+3=93\)

\(2x=90\)

\(x=45\)

Vậy \(x=45\).

11 tháng 11 2016

Đặt A = \(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{\left(2x+1\right)\left(2x+3\right)}=\frac{5}{31}\)

  2A   = \(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{\left(2x+1\right)\left(2x+3\right)}=\frac{10}{31}\)

  2A   = \(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{\left(2x+1\right)}-\frac{1}{2x+3}=\frac{10}{31}\)

  2A   = \(\frac{1}{3}-\frac{1}{2x+3}=\frac{10}{31}\)

  Ta có :  \(\frac{1}{3}-\frac{1}{2x+3}=\frac{10}{31}\)

                           \(\frac{1}{2x+3}=\frac{1}{3}-\frac{10}{31}\)

                          \(\frac{1}{2x+3}=\frac{1}{93}\)

=> 2x + 3 = 93

     2x       = 90

       x       = 45

25 tháng 2 2017

\(Q=\frac{3}{3.5}+\frac{3}{5.7}+\frac{3}{7.9}+...+\frac{3}{47.49}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{47}-\frac{1}{49}\)

\(=\frac{1}{3}-\frac{1}{49}\)

\(=\frac{46}{147}\)

Vậy \(Q=\frac{46}{147}\)

25 tháng 2 2017

Ta có : \(\frac{2}{3}Q=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{47.49}\)

\(\Rightarrow\frac{2}{3}Q=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{47}-\frac{1}{49}\)

\(\Rightarrow\frac{2}{3}Q=\frac{1}{3}-\frac{1}{49}=\frac{49}{147}-\frac{3}{147}=\frac{46}{147}\)

\(\Rightarrow Q=\frac{46}{147}\div\frac{2}{3}=\frac{138}{294}=\frac{23}{49}\)

Vậy ...

24 tháng 3 2017

A. Đặt A= biểu thức đã cho

=>\(\frac{A}{3}=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)

=>\(\frac{A}{3}.2=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}\)

=>\(\frac{2A}{3}-\frac{A}{3}=2-\frac{1}{2^9}\)

=>\(A=\frac{3\left(2^{10}-1\right)}{2^9}\)

B. Đặt B=biểu thức đã cho

\(\Rightarrow\frac{B}{2}=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{2015.2017}=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2015}-\frac{1}{2017}\)

\(=\frac{1}{3}-\frac{1}{2017}=\frac{2014}{6051}\)

\(\Rightarrow B=\frac{4028}{6051}\)

25 tháng 4 2017

ta co : 65%=0,65

goi A= 4.(1/3.5+1/5.7+1/7.9+............+1/97.99)

2A=4.( 2/3.5+2/5.7+2/7.9+...............+2/97.99)

2A=4.(1/3-1/5+1/5-1/7+1/7-1/9+...+1/97-1/99)

2A=4.(1/3-1/99)

2A=4.(33/=99+1/99)

2A=4.34/99

2A=136/99

A=136/99:2

A=68/99=0,69=0,68

Vi A=0,68 > 0,65

=> A > 65%

1 tháng 4 2018

\(C=\frac{3}{3\cdot5}+\frac{3}{5\cdot7}+\frac{3}{7\cdot9}+...+\frac{3}{47\cdot49}\)

\(\Rightarrow\frac{2}{3}C=\frac{2}{3}\cdot\left(\frac{3}{3\cdot5}+\frac{3}{5\cdot7}+\frac{3}{7\cdot9}+...+\frac{3}{47\cdot49}\right)\)

\(\Rightarrow\frac{2}{3}C=\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{47\cdot49}\)

\(\Rightarrow\frac{2}{3}C=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{47}-\frac{1}{49}\)

\(\Rightarrow\frac{2}{3}C=\frac{1}{3}-\frac{1}{49}\)

\(\Rightarrow\frac{2}{3}C=\frac{46}{147}\)

\(\Rightarrow C=\frac{46}{147}:\frac{2}{3}\)

\(\Rightarrow C=\frac{23}{49}\)

1 tháng 4 2018

3/3.5+3/5.7+3/7.9+.....+3/47.49

=1-1/5+1/5-1/7+...+1/47-1/49

=1-1/49

=48/49