K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2017

khocroi

10 tháng 11 2017

Ai giỏi toán giúp mk,mk tặng 3sp,trong hôm nay

3 tháng 3 2017

Đây bạn

Viết lại bài toán cần chứng minh
13+23+33+..n3=(1+2+3+...+n)213+23+33+..n3=(1+2+3+...+n)2
Với n=1;n=2n=1;n=2 thì đẳng thức hiển nhiên đúng, hay chính là câu a,b đó :P
Giả sử đẳng thức đúng với n=kn=k
Tức 13+23+33+...k3=(1+2+3+4..+k)213+23+33+...k3=(1+2+3+4..+k)2
Ta sẽ chứng minh nó đúng với n=k+1n=k+1
Viết lại đẳng thức cần chứng minh 13+23+33+...k3+(k+1)3=(1+2+3+4..+k+k+1)213+23+33+...k3+(k+1)3=(1+2+3+4..+k+k+1)2 (*)
Mặt khác ta có công thức tính tổng sau 1+2+3+4+...+n=n(n+1)21+2+3+4+...+n=n(n+1)2
⇒(1+2+3+4+...+n)2=(n2+n)24⇒(1+2+3+4+...+n)2=(n2+n)24
Vậy viết lại đẳng thức cần chứng minh
(k2+k)24+(k+1)3=(k2+3k+2)24(k2+k)24+(k+1)3=(k2+3k+2)24
⇔(k2+3k+2)2−(k2+k)2=4(k+1)3⇔(k2+3k+2)2−(k2+k)2=4(k+1)3
Bằng biện pháp "nhân tung tóe", đẳng thức cần chứng minh tuơng đuơng
⇔4k3+12k2+12k+4=4(k+1)3⇔4k3+12k2+12k+4=4(k+1)3
⇔4(k+1)3=4(k+1)3⇔4(k+1)3=4(k+1)3 ~ Đẳng thức này đúng.
Vậy theo nguyên lý quy nạp ta có đpcm.

3 tháng 3 2017

Giải hẳn hoi nha các bạn, đừng có viết luôn dạng tổng quát, nha hihiokthanghoavuibanh

22 tháng 3 2017

a, Ta có: \(\left(\dfrac{1}{80}\right)^7>\left(\dfrac{1}{81}\right)^7=\left(\dfrac{1}{3^4}\right)^7=\left(\dfrac{1}{3}\right)^{28}=\dfrac{1}{3^{28}}\)

\(\left(\dfrac{1}{243}\right)^6=\left(\dfrac{1}{3^5}\right)^6=\left(\dfrac{1}{3}\right)^{30}=\dfrac{1}{3^{30}}\)

\(\dfrac{1}{3^{28}}>\dfrac{!}{3^{30}}\Rightarrow\left(\dfrac{1}{81}\right)^7>\left(\dfrac{1}{243}\right)^6\Rightarrow\) \(\left(\dfrac{1}{80}\right)^7>\left(\dfrac{1}{243}\right)^6\)

b, Ta có: \(\left(\dfrac{3}{8}\right)^5=\dfrac{3^5}{\left(2^3\right)^5}=\dfrac{243}{2^{15}}>\dfrac{243}{3^{15}}>\dfrac{125}{3^{15}}=\dfrac{5^3}{\left(3^5\right)^3}=\left(\dfrac{5}{243}\right)^3\)

\(\Rightarrow\left(\dfrac{3}{8}\right)^5>\left(\dfrac{5}{243}\right)^3\)

22 tháng 3 2017

tội bạn hè

10 tháng 11 2017

100:{250:[450-(4.53-32.25)]}

=100:{250:[450-(4.125-9.25)]}

=100;{250:[450-(500-225)]}

=100:{250:[450-275]

=100:{250:175}

=100:10/7

=70

10 tháng 11 2017

\(100:\left\{250:\left[450-\left(4.5^3-3^2.25\right)\right]\right\}\)

\(=100:\left[250:175\right]\)

\(=100:\dfrac{10}{7}\)

\(=70\)

16 tháng 4 2017

\(\left(x-y^2+z\right)^2\ge0\)

\(\left(y-2\right)^2\ge0\)

\(\left(z-3\right)^2\ge0\)

\(\left(x-y^2+z\right)^2+\left(y-2\right)^2+\left(z-3\right)^2=0\)

\(\Rightarrow\) \(\left(x-y^2+z\right)^2=0;\text{ }\left(y-2\right)^2=0;\text{ }\left(z-3\right)^2=0\)

+\(\text{ }\left(y-2\right)^2=0\)

\(\Rightarrow\text{ }y-2=0\)

\(y=0+2\)

\(y=2\)

+ \(\left(z-3\right)^2=0\)

\(\Rightarrow z-3=0\)

\(z=0+3\)

\(z=3\)

+ \(\left(x-y^2+z\right)^2=0\)

\(\Rightarrow x-y^2+z=0\)

\(x-2^2+3=0\)

\(x-4=0-3\)

\(x-4=-3\)

\(x=-3+4\)

\(x=1\)

Vậy: \(x=1;\text{ }y=2;\text{ }z=3\)

10 tháng 11 2017

a) \(100:\left\{250:\left[450-\left(4.5^3-25.4\right)\right]\right\}\)

\(=100:\left\{250:\left[450-\left(4.125-25.4\right)\right]\right\}\)

\(=100:\left\{250:\left[450-\left(500-100\right)\right]\right\}\)

\(=100:\left[250:\left(450-400\right)\right]\)

\(=100:\left(250:50\right)\)

\(=100:5\)

\(=20\)

b) \(4\left(18-15\right)-\left(5-3\right).3^2\)

\(=4.3-2.3^2\)

\(=4.3-2.9\)

\(=12-18\)

\(=-6\)

10 tháng 11 2017

100:{250:[450-(4.53 -25.4)]}

=100:{250:[450-(4.125-25.4)]}

=100:{250:[450-(500-100)]}

=100:{250:[450-400]}

=100:{250:50}

=100:5

=20

b)4.(18-15)-(5-3).32

=4.(18-15)-(5-3).9

=4.3-2.9

=12-18

=(-6)

=4.

7 tháng 11 2017

\(\left(3n\right)^{100}\\ =3^{100}.n^{100}\\ =\left(3^4\right)^{25}.n^{100}\\ =81^{25}.n^{100}⋮81\)

Vậy \(\left(3n\right)^{100}⋮81\)

Chúc em học tốt!vui

7 tháng 11 2017

Cảm ơn cj nhìu nhìu lắm!!!hihingaingung

10 tháng 11 2017

a) \(100:\left\{250:\left[450-\left(4.5^3-2^2.25\right)\right]\right\}\)

\(=100:\left\{250:\left[450-\left(4.125-4.25\right)\right]\right\}\)

\(=100:\left\{250:\left[450-\left(500-100\right)\right]\right\}\)

\(=100:\left[250:\left(450-400\right)\right]\)

\(=100:\left(250:50\right)\)

\(=100:5\)

\(=20\)

b) \(109.5^2-3^2.25\)

\(=109.25-9.25\)

\(=25\left(109-9\right)\)

\(=25.100\)

\(=2500\)

c) \(\left[5^2.6-20.\left(37-2^5\right)\right]:10-20\)

\(=\left[5^2.6-20.\left(37-32\right)\right]:10-20\)

\(=\left(5^2.6-20.5\right):10-20\)

\(=\left(25.6-20.5\right):10-20\)

\(=\left(150-100\right):10-20\)

\(=50:10-20\)

\(=5-20\)

\(=-15\)

10 tháng 8 2017

\(\left(x-1\right)^3-\left(x+2\right)^2=\left(2+x\right)^3-2x\left(2+3x\right)\)

\(\Leftrightarrow x^3-3x^2+3x-1-\left(x^2+4x+4\right)=8+12x+6x^2+x^3-4x-6x^2\)

\(\Leftrightarrow x^3-3x^2+3x-1-x^2-4x-4-8-12x-6x^2-x^3+4x+6x^2=0\)

\(\Leftrightarrow-4x^2-9x-13=0\)

\(\Leftrightarrow-\left(4x^2+9x+13\right)=0\Leftrightarrow4x^2+9x+13=0\)

\(\Leftrightarrow4x^2+9x+\dfrac{81}{16}+\dfrac{127}{16}=0\Leftrightarrow\left(2x+\dfrac{9}{4}\right)^2+\dfrac{127}{16}=0\)

ta có : \(\left(2x+\dfrac{9}{4}\right)^2\ge0\) với mọi giá trị của \(x\)

\(\Rightarrow\left(2x+\dfrac{9}{4}\right)^2+\dfrac{127}{16}\ge\dfrac{127}{16}>0\) với mọi giá trị của \(x\)

vậy phương trình vô nghiệm

10 tháng 8 2017

Đoạn cuối bn giải sai rồi thi phải,sau khi đã tính đc và nhận biết a,b,c nhân với - 1 để có giá trị dương thì mk chỉ việc tính Denta rồi theo quy tắc để tính x1 và x2 thôi (Ý kiến riêng)

15 tháng 7 2017

Bài 1 là tính hợp lí

2 tháng 2 2018

mình giúp bài tìm x nhé

(x - 1)^5 = (x - 1)^4

(x - 1)^5 : (x - 1)^4 = 1

x - 1=1

x = 2

thế nhé. Good luck. ^_^