K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2018

\(\left|x-4\right|< \frac{3}{4}\Leftrightarrow\frac{-3}{4}< x-4< \frac{3}{4}\Leftrightarrow\frac{-3}{4}+4< x-4+4< \frac{3}{4}+4\Leftrightarrow\frac{13}{4}< x< \frac{19}{4}\)

28 tháng 6 2016

Thank you very much !!!!

13 tháng 7 2018

a) Đặt \(\frac{x}{5}=\frac{y}{7}=k\)

\(\Rightarrow\hept{\begin{cases}x=5k\\y=7k\end{cases}}\)

\(\Rightarrow xy=5k.7k\)

\(\Rightarrow140=35k^2\)

\(\Rightarrow k^2=4\)

\(\Rightarrow\orbr{\begin{cases}k=2\\k=-2\end{cases}}\)

Với k = 2 ta có :

+) \(\frac{x}{5}=2\Rightarrow x=10\)

+) \(\frac{y}{7}=2\Rightarrow y=14\)

Với k = -2 ta có :

+) \(\frac{x}{5}=-2\Rightarrow x=-10\)

+) \(\frac{y}{7}=-2\Rightarrow y=-14\)

Vậy  \(\left(x;y\right)=\left\{\left(10;14\right);\left(-10;-14\right)\right\}\)

b) Ta có :

\(x:y:z\)\(=\)\(2:5:7\)\(\Rightarrow\)\(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\)\(\Rightarrow\)\(\frac{3x}{6}=\frac{2y}{10}=\frac{z}{7}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{3x}{6}=\frac{2y}{10}=\frac{z}{7}=\frac{3x+2y-z}{6+10-7}=\frac{27}{9}=3\)

+) \(\frac{x}{2}=3\Rightarrow x=6\)

+) \(\frac{y}{5}=3\Rightarrow y=15\)

+) \(\frac{z}{7}=3\Rightarrow z=21\)

Vậy x = 6, y = 15 và z = 21

_Chúc bạn học tốt_

13 tháng 7 2018

a, x.y/5.7=140/35

=140/35=4

x/5=4/7

x/7=5/4

x.7=5.4

x.7=20

x=20;7

x=20/7

b,chịu

tk thì tk ko tk cx đc

25 tháng 7 2017

giup mk di

25 tháng 7 2017

nhanh len cac ban oi

18 tháng 8 2017

a) \(\left(x+1\right)\left(x-2\right)< 0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1>0\\x-2< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x+1< 0\\x-2>0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>-1\\x< 2\end{matrix}\right.\\\left\{{}\begin{matrix}x< -1\\x>2\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-1< x< 2\\x\in\varnothing\end{matrix}\right.\) vậy \(-1< x< 2\)

b) \(\left(x-2\right)\left(x+\dfrac{2}{3}\right)>0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2>0\\x+\dfrac{2}{3}>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-2< 0\\x+\dfrac{2}{3}< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>2\\x>\dfrac{-2}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2\\x< \dfrac{-2}{3}\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x>2\\x< \dfrac{-2}{3}\end{matrix}\right.\) vậy \(x>2\) hoặc \(x< \dfrac{-2}{3}\)