K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: \(x\left(2-x\right)+\left(x^2+x\right)=7\)

\(\Leftrightarrow2x-x^2+x^2+x=7\)

\(\Leftrightarrow3x=7\)

hay \(x=\dfrac{7}{3}\)

b: Ta có: \(\left(2x+1\right)^2-x\left(4-5x\right)=17\)

\(\Leftrightarrow4x^2+4x+1-4x+5x^2=17\)

\(\Leftrightarrow9x^2=16\)

\(\Leftrightarrow x^2=\dfrac{16}{9}\)

hay \(x\in\left\{\dfrac{4}{3};-\dfrac{4}{3}\right\}\)

15 tháng 11 2017

2)

a) \(3x^3-3x=0\)

\(\Leftrightarrow3x\left(x^2-1\right)=0\)

\(\Leftrightarrow3x\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=0\\x-1=0\\x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)

Vậy x=0 ; x=-1 ; x=1

b) \(x^2-x+\dfrac{1}{4}=0\)

\(\Leftrightarrow x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2=0\)

\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2=0\)

\(\Leftrightarrow x-\dfrac{1}{2}=0\)

\(\Leftrightarrow x=\dfrac{1}{2}\)

Vậy \(x=\dfrac{1}{2}\)

15 tháng 11 2017

1)

a) \(\left(x-2\right)\left(x^2+3x+4\right)\)

\(\Leftrightarrow x^3+3x^2+4x-2x^2-6x-8\)

\(\Leftrightarrow x^3+x^2-2x-8\)

b) \(\left(x-2\right)\left(x-x^2+4\right)\)

\(=x^2-x^3+4x-2x+2x^2-8\)

\(=3x^2-x^3+2x-8\)

c) \(\left(x^2-1\right)\left(x^2+2x\right)\)

\(=x^4+2x^3-x^2-2x\)

d) \(\left(2x-1\right)\left(3x+2\right)\left(3-x\right)\)

\(=\left(6x^2+4x-3x-2\right)\left(3-x\right)\)

\(=18x^2+12x-9x-6-6x^3-4x^2+3x^2+2x\)

\(=17x^2+5x-6-6x^3\)

2 tháng 9 2020

Bài 1.

a) x( 8x - 2 ) - 8x2 + 12 = 0

<=> 8x2 - 2x - 8x2 + 12 = 0 

<=> 12 - 2x = 0

<=> 2x = 12

<=> x = 6

b) x( 4x - 5 ) - ( 2x + 1 )2 = 0

<=> 4x2 - 5x - ( 4x2 + 4x + 1 ) = 0

<=> 4x2 - 5x - 4x2 - 4x - 1 = 0

<=> -9x - 1 = 0

<=> -9x = 1

<=> x = -1/9

c) ( 5 - 2x )( 2x + 7 ) = ( 2x - 5 )( 2x + 5 )

<=> -4x2 - 4x + 35 = 4x2 - 25

<=> -4x2 - 4x + 35 - 4x2 + 25 = 0

<=> -8x2 - 4x + 60 = 0

<=> -8x2 + 20x - 24x + 60 = 0

<=> -4x( 2x - 5 ) - 12( 2x - 5 ) = 0

<=> ( 2x - 5 )( -4x - 12 ) = 0

<=> \(\orbr{\begin{cases}2x-5=0\\-4x-12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-3\end{cases}}\)

d) 64x2 - 49 = 0

<=> ( 8x )2 - 72 = 0

<=> ( 8x - 7 )( 8x + 7 ) = 0

<=> \(\orbr{\begin{cases}8x-7=0\\8x+7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{8}\\x=-\frac{7}{8}\end{cases}}\)

e) ( x2 + 6x + 9 )( x2 + 8x + 7 ) = 0

<=> ( x + 3 )2( x2 + x + 7x + 7 ) = 0

<=> ( x + 3 )[ x( x + 1 ) + 7( x + 1 ) ] = 0

<=> ( x + 3 )2( x + 1 )( x + 7 ) = 0

<=> x = -3 hoặc x = -1 hoặc x = -7

g) ( x2 + 1 )( x2 - 8x + 7 ) = 0

Vì x2 + 1 ≥ 1 > 0 với mọi x

=> x2 - 8x + 7 = 0

=> x2 - x - 7x + 7 = 0

=> x( x - 1 ) - 7( x - 1 ) = 0

=> ( x - 1 )( x - 7 ) = 0

=> \(\orbr{\begin{cases}x-1=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=7\end{cases}}\)

Bài 2.

a) ( x - 1 )2 - ( x - 2 )( x + 2 )

= x2 - 2x + 1 - ( x2 - 4 )

= x2 - 2x + 1 - x2 + 4

= -2x + 5

b) ( 3x + 5 )2 + ( 26x + 10 )( 2 - 3x ) + ( 2 - 3x )2

= 9x2 + 30x + 25 - 78x2 + 22x + 20 + 9x2 - 12x + 4

= ( 9x2 - 78x2 + 9x2 ) + ( 30x + 22x - 12x ) + ( 25 + 20 + 4 )

= -60x2 + 40x2 + 49

d) ( x + y )2 - ( x + y - 2 )2

= [ x + y - ( x + y - 2 ) ][ x + y + ( x + y - 2 ) ]

= ( x + y - x - y + 2 )( x + y + x + y - 2 )

= 2( 2x + 2y - 2 )

= 4x + 4y - 4

Bài 3.

 A = 3x2 + 18x + 33

= 3( x2 + 6x + 9 ) + 6 

= 3( x + 3 )2 + 6 ≥ 6 ∀ x

Đẳng thức xảy ra <=> x + 3 = 0 => x = -3

=> MinA = 6 <=> x = -3

B = x2 - 6x + 10 + y2

= ( x2 - 6x + 9 ) + y2 + 1

= ( x - 3 )2 + y2 + 1 ≥ 1 ∀ x,y

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-3=0\\y^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=0\end{cases}}\)

=> MinB = 1 <=> x = 3 ; y = 0

C = ( 2x - 1 )2 + ( x + 2 )2

= 4x2 - 4x + 1 + x2 + 4x + 4

= 5x2 + 5 ≥ 5 ∀ x

Đẳng thức xảy ra <=> 5x2 = 0 => x = 0

=> MinC = 5 <=> x = 0

D = -2/7x2 - 8x + 7 ( sửa thành tìm Max )

Để D đạt GTLN => 7x2 - 8x + 7 đạt GTNN

7x2 - 8x + 7 

= 7( x2 - 8/7x + 16/49 ) + 33/7

= 7( x - 4/7 )2 + 33/7 ≥ 33/7 ∀ x

Đẳng thức xảy ra <=> x - 4/7 = 0 => x = 4/7

=> MaxC = \(\frac{-2}{\frac{33}{7}}=-\frac{14}{33}\)<=> x = 4/7

a: \(\Leftrightarrow x^3+8-x^3-3x=5\)

=>3x=3

hay x=1

b: \(\Leftrightarrow x^3-8-x\left(x^2-1\right)=8\)

\(\Leftrightarrow x^3-8-x^3+x=8\)

=>x=16

c: =>x2+2=3

=>x2=1

=>x=1 hoặc x=-1

f: \(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2+6y+9\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y+3\right)^2=0\)

=>x=1 và y=-3

1 tháng 11 2021

1.a) 2x4-4x3+2x2

=2x2(x2-2x+1)

=2x2(x-1)2

b) 2x2-2xy+5x-5y

=2x(x-y)+5(x-y)

=(2x+5)(x-y)

2.

a) 4x(x-3)-x+3=0

=>4x(x-3)-(x-3)=0

=>(4x-1)(x-3)=0

=> 2 TH:

*4x-1=0            *x-3=0

=>4x=0+1        =>x=0+3

=>4x=1           =>x=3

=>x=1/4

vậy x=1/4 hoặc x=3

b) (2x-3)^2-(x+1)^2=0

=> (2x-3-x-1).(2x-3+x+1)=0

=>(x-4).(3x-2)=0

=> 2 TH

*x-4=0

=> x=0+4

=> x=4

*3x-2=0

=>3x=0-2

=>3x=-2

=>x=-2/3 

vậy x=4 hoặc x=-2/3

1 tháng 11 2021

sửa 1 chút phần cuối:

3x-2=0

=>3x=0+2

=>3x=2

=>x=2/3

vậy x=2/3 hoặc....

AH
Akai Haruma
Giáo viên
12 tháng 5 2020

i)

$I=x^4+4x^3-x^2-14x+6$

$=(x^4+4x^4+4x^2)-5x^2-14x+6$

$=(x^2+2x)^2-6(x^2+2x)+9+x^2-2x-3$

$=(x^2+2x-3)^2+(x^2-2x+1)-4$

$=(x-1)^2(x+3)^2+(x-1)^2-4$

$=(x-1)^2[(x+3)^2+1]-4\geq -4$

Vậy $I_{\min}=-4$ khi $(x-1)^2[(x+3)^2+1]=0\Leftrightarrow x=1$

k)

$K=x^4+2x^3-10x^2-16x+45$

$=(x^4+2x^3+x^2)-11x^2-16x+45$

$=(x^2+x)^2-12(x^2+x)+x^2-4x+45$

$=(x^2+x)^2-12(x^2+x)+36+(x^2-4x+4)+5$

$=(x^2+x-6)^2+(x-2)^2+5$

$=[(x-2)(x+3)]^2+(x-2)^2+5$

$=(x-2)^2[(x+3)^2+1]+5\geq 5$

Vậy $K_{\min}=5$ khi $(x-2)^2[(x+3)^2+1]=0\Leftrightarrow x=2$

AH
Akai Haruma
Giáo viên
12 tháng 5 2020

g)

$G=x^4+4x^3+10x^2+12x+11$

$=(x^4+4x^3+4x^2)+6x^2+12x+11$

$=(x^2+2x)^2+6(x^2+2x)+11$

Đặt $x^2+2x=t$. Khi đó $t=x^2+2x=(x+1)^2-1\geq -1\Rightarrow t+1\geq 0$

$\Rightarrow G=t^2+6t+11=(t+1)^2+4(t+1)+7\geq 7$

Vậy $G_{\min}=7$ khi $t=-1\Leftrightarrow (x+1)^2=0\Leftrightarrow x=-1$

h)

$H=x^4-6x^3+x^2+24x+18$

$=(x^4-6x^3+9x^2)-8x^2+24x+18$

$=(x^2-3x)^2-8(x^2-3x)+18$

$=(x^2-3x)^2-8(x^2-3x)+16+2$

$=(x^2-3x-4)^2+2\geq 2$

Vậy $H_{\min}=2$ khi $x^2-3x-4=0\Leftrightarrow x=4$ hoặc $x=-1$

8 tháng 1 2018

Bài 2: a) \(3x^3-3x=0\Leftrightarrow3x\left(x^2-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)

b) \(x^2-x+\frac{1}{4}=0\Leftrightarrow x^2-2.\frac{1}{2}+\left(\frac{1}{2}\right)^2=0\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)

28 tháng 9 2018

\(x^2-2x=24\)

<=>  \(x^2-2x-24=0\)

<=>  \( \left(x+4\right)\left(x-6\right)=0\)

<=> \(\orbr{\begin{cases}x=-4\\x=6\end{cases}}\)

Vậy....

1 tháng 9 2019

\(a,\left(x+2\right)^2-x^2+4=0\)

\(\Leftrightarrow\left(x+2\right)^2+4-x^2=0\)

\(\Leftrightarrow\left(2+x\right)^2+\left(2-x\right)\left(2+x\right)=0\)

\(\Leftrightarrow\left(2+x\right)\left(2+x+2-x\right)=0\)

\(\Leftrightarrow4\left(2+x\right)=0\)

\(\Leftrightarrow2+x=0\)

\(\Leftrightarrow x=-2\)

\(c,\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)

\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5\left(x^2-49\right)=0\)

\(\Leftrightarrow5x^2+2x+10-5x^2+245=0\)

\(\Leftrightarrow2x+255=0\)

\(\Leftrightarrow x=-127,5\)

22 tháng 8 2017

a)\(x^2+3x+6=x^2+2.\frac{3}{2}x+\frac{9}{4}+\frac{15}{4}=0\)

  \(\left(x+\frac{3}{2}\right)^2+\frac{15}{4}=0\)

      \(\left(x+\frac{3}{2}\right)^2=-\frac{15}{4}\)

             Vì bình phương luôn lớn hơn hoặc bằng 0

                    Nên PT vô nghiệm

b)\(x^2-2x-3=0\)

   \(x^2-3x+x-3=0\)

    \(\left(x+1\right)\left(x-3\right)=0\)

            \(\Rightarrow\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)

                            

22 tháng 8 2017

d)\(x^3-2x^2-x+2=0\)

   \(x^2\left(x-2\right)-\left(x-2\right)=0\)

    \(\left(x-1\right)\left(x+1\right)\left(x-2\right)=0\)

        \(\Rightarrow\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)

              x - 2 = 0                   x=2

c)\(2x^2+7x+3=0\)

    \(2x^2+x+6x+3=0\)

    \(x\left(2x+1\right)+3\left(2x+1\right)=0\)

     \(\left(2x+1\right)\left(x+3\right)=0\)

          \(\Rightarrow\orbr{\begin{cases}2x+1=0\\x+3=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{1}{2}\\x=-3\end{cases}}\)

13 tháng 6 2019

a) \(3\left(2x-1\right)\left(3x-1\right)-\left(2x-3\right)\left(9x-1\right)-3=-3\)

\(\Leftrightarrow18x^2-15x+3-18x^2+29x-3-3=-3\)

\(\Leftrightarrow14x=0\)

\(\Leftrightarrow x=0\)

Vậy pt có nghiệm duy nhất x = 0.

b) \(\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)=\left(x+2\right)-\left(x-5\right)\)

\(\Leftrightarrow6x^2+19x-7-6x^2-x+5=7\)

\(\Leftrightarrow18x-2=7\)

\(\Leftrightarrow18x=9\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy pt có nghiệm duy nhất \(x=\frac{1}{2}\)

c) \(\left(6x-2\right)^2+\left(5x-2\right)^2-4\left(3x-1\right)\left(5x-2\right)=0\)

\(\Leftrightarrow36x^2-24x+4+25x^2-20x+4-60x^2+33x-8=0\)

\(\Leftrightarrow x^2-11x=0\)

\(\Leftrightarrow x\left(x-11\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=11\end{matrix}\right.\)

Vậy pt có tập nghiệm \(S=\left\{0;11\right\}\)

d) \(\left(x+3\right)^2-\left(x-4\right)\left(x+8\right)=1\)

\(\Leftrightarrow x^2-6x+9-x^2-4x+32=1\)

\(\Leftrightarrow41-10x=1\)

\(\Leftrightarrow-10x=40\)

\(\Leftrightarrow x=-4\)

Vậy pt có nghiệm duy nhất x = -4.

e) \(3\left(x+2\right)^2+\left(2x-1\right)^2-7\left(x+3\right)\left(x-3\right)=36\)

\(\Leftrightarrow3\left(x^2+4x+4\right)+4x^2-4x+1-7x^2+36=36\)

\(\Leftrightarrow3x^2+12x+12+4x^2-4x+1-7x^2=0\)

\(\Leftrightarrow8x=-13\)

\(\Leftrightarrow x=-\frac{13}{8}\)

Vậy pt có nghiệm duy nhất \(x=-\frac{13}{8}\)