Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(P\left(x\right)=3x^5-4x^4-2x^3+4x^2+5x+6\)
\(Q\left(x\right)=-x^5+2x^4-2x^3+3x^2-x+\dfrac{1}{4}\)
b: \(P\left(x\right)+Q\left(x\right)=2x^5-2x^4-4x^3+7x^2+4x+\dfrac{25}{4}\)
c: \(P\left(-1\right)=-3-4+2+4-5+6=0\)
Do đó: x=-1 là nghiệm của P(x)
\(Q\left(-1\right)=-\left(-1\right)+2-2\cdot\left(-1\right)+3-\left(-1\right)+\dfrac{1}{4}\)
\(=1+2+2+3+1+\dfrac{1}{4}=9.25>0\)
Do đó: x=-1 không là nghiệm của P(x)
Ta có :
\(\left|3x-1\right|\ge0\)
\(\Rightarrow\)\(2\left|3x-1\right|\ge0\)
\(\Rightarrow\)\(2\left|3x-1\right|-4\ge-4\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left|3x-1\right|=0\)
\(\Leftrightarrow\)\(3x-1=0\)
\(\Leftrightarrow\)\(3x=1\)
\(\Leftrightarrow\)\(x=\frac{1}{3}\)
Vậy GTNN của \(A\) là \(-4\) khi \(x=\frac{1}{3}\)
Chúc bạn học tốt ~
Ta có :
\(\left|x-2\right|\ge0\)
\(\Rightarrow\)\(4\left|x-2\right|\ge0\)
\(\Rightarrow\)\(B=10-4\left|x-2\right|\le10\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left|x-2\right|=0\)
\(\Leftrightarrow\)\(x-2=0\)
\(\Leftrightarrow\)\(x=2\)
Vậy GTLN của \(B\) là \(10\) khi \(x=2\)
Chúc bạn học tốt ~
1.a) ĐK : \(3-2x\ge0\forall x\Rightarrow x\le\frac{3}{2}\)
Khi đó : \(\left|\frac{1}{2}x\right|=3-2x\Leftrightarrow\orbr{\begin{cases}\frac{1}{2}x=3-2x\\\frac{1}{2}x=-3+2x\end{cases}}\Rightarrow\orbr{\begin{cases}\frac{5}{2}x=3\\\frac{3}{2}x=3\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{6}{5}\\x=2\end{cases}}\left(tm\right)\)
Vậy \(x\in\left\{\frac{6}{5};2\right\}\)
b) ĐK : \(3x+2\ge0\Rightarrow x\ge\frac{-2}{3}\)
Khi đó : \(\left|x-1\right|=3x+2\Leftrightarrow\orbr{\begin{cases}x-1=3x+2\\x-1=-3x-2\end{cases}}\Rightarrow\orbr{\begin{cases}-2x=3\\4x=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1,5\\x=-0,25\left(tm\right)\end{cases}}\)
Vậy x = -0,25
c) ĐKXĐ : \(x-12\ge0\Rightarrow x\ge12\)
Khi đó |5x| = x - 12
<=> \(\orbr{\begin{cases}5x=x-12\\5x=-x+12\end{cases}}\Rightarrow\orbr{\begin{cases}4x=-12\\6x=12\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3\\x=2\end{cases}}\left(\text{loại}\right)\)
Vậy \(x\in\varnothing\)
d) ĐK : \(5x+1\ge0\Rightarrow x\ge-\frac{1}{5}\)
Khi đó \(\left|17-x\right|=5x+1\Leftrightarrow\orbr{\begin{cases}17-x=5x+1\\17-x=-5x-1\end{cases}}\Rightarrow\orbr{\begin{cases}6x=16\\-4x=18\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{8}{3}\left(tm\right)\\x=-4,5\left(\text{loại}\right)\end{cases}}\)
Vậy x = 8/3
Tóm lại : Cách làm là
|f(x)| = g(x)
ĐK : g(x) \(\ge0\)
=> \(\orbr{\begin{cases}f\left(x\right)=-g\left(x\right)\\f\left(x\right)=g\left(x\right)\end{cases}}\)
Bạn tự làm tiếp đi ak
Bài 1:
-l 4 - x l nhỏ hơn bằng 0
- l x - 23l nhỏ hơn bằng 0
=> x=4 hoặc x=23 thay hai cái này vào xem cái nào có GTLN thì lấy
KQ là -19
Bài 2
cộng hai vế
x.(x+y)=90
y.(x+y)=54
lại ta có (x+y).(x+y)=114
=> (x+y)^2 =114
=> x+y =12 => l x+yl=12
k cho mk nhá, mk làm bài này rồi, mk sẽ làm tiếp nếu bạn k
Ta có ; 2|3x - 1| + 1 = 5
<=> 2|3x - 1| = 4
<=> |3x - 1| = 2
<=> \(\orbr{\begin{cases}3x-1=2\\3x-1=-2\end{cases}}\)
a)\(2\left|3x-1\right|+1=5\)
\(TH1:x\ge\frac{3}{5}\).PT có dạng:\(2\left(3x-1\right)+1=5\)
\(\Leftrightarrow6x=6\)
\(\Leftrightarrow x=1\left(TM\right)\)
\(TH2:x< \frac{3}{5}\)Pt có dạng:\(-2\left(3x-1\right)+1=5\)
\(\Leftrightarrow-6x=2\)
\(\Leftrightarrow x=-\frac{2}{6}\left(TM\right)\)