K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2018

\(2012.\left|x-2011\right|+\left(x-2011\right)^2=2013\left|2011-x\right|\)

\(2012.\left|x-2011\right|+\left|x-2011\right|^2=2013\left|x-2011\right|\)

\(\left|x-2011\right|\left(2012+\left|x-2011\right|\right)=2013\left|x-2011\right|\)

\(\Rightarrow2012+\left|x-2011\right|=2013\)

\(\left|x-2011\right|=1\)

\(\Rightarrow\orbr{\begin{cases}x=2012\\x=-2010\end{cases}}\)

17 tháng 9 2018

a) \(\frac{x+4}{2009}+1+\frac{x+3}{2010}+1=\frac{x+2}{2011}+1+\frac{x+1}{2012}\)

\(\frac{x+4+2009}{2009}+\frac{x+3+2010}{2010}=\frac{x+2+2011}{2011}+\frac{x+2+2012}{2012}\)

\(\frac{x+2013}{2009}+\frac{x+2013}{2010}-\frac{x+2013}{2011}-\frac{x+2013}{2012}=0\)

\(\left(x+2013\right).\left(\frac{1}{2009}+\frac{1}{2010}-\frac{1}{2011}-\frac{1}{2012}\right)=0\)    (1)

Vì \(\left(\frac{1}{2009}+\frac{1}{2010}-\frac{1}{2011}-\frac{1}{2012}\right)\ne0\)

Nên biểu thức (1) xảy ra khi \(x+2013=0\)

\(x=-2013\)

b) \(\left(x-2011\right)\left(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)=0\)  (2)

Vì \(\left(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)\ne0\)

Nên biểu thức (2) xảy ra khi \(x-2011=0\)

\(x=2011\)

x=100

nên x+1=101

\(f\left(x\right)=x^{2014}-\left(x+1\right)\left(x^{2013}-x^{2012}+...-x^2+x\right)+25\)

\(=x+25\)

=x+25=100+25=125

17 tháng 11 2019

Do  \(\hept{\begin{cases}\left|2x-4\right|^{2011}\ge0\\\left(y+2013\right)^{2012}\ge0\end{cases}}\) nên để \(\left|2x-4\right|^{2011}+\left(y+2013\right)^{2012}=0\)thì : 

\(\hept{\begin{cases}\left|2x-4\right|^{2011}=0\\\left(y+2013\right)^{2012}=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x-4=0\\y+2013=0\end{cases}\Leftrightarrow}\hept{\begin{cases}2x=4\\y=-2013\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=-2013\end{cases}}}\)

Vậy x = 2 ; y = -2013

17 tháng 11 2019

Có /2x-4/^2011 luôn >=0 với mọi x

(y+2013)^2012 >= 0 với mọi y

Mà tổng lại =0

=> ''='' xảy ra <=> 2x-4=0 và y+2013=0

<=> x=2 và y=-2013.

Vậy x=2 và y=-2013.

x=2012

nên x+1=2013

\(f\left(x\right)=x^{2013}-x^{2012}\left(x+1\right)+x^{2011}\left(x+1\right)-...-x^2\left(x+1\right)+x\left(x+1\right)-1\)

\(=x^{2013}-x^{2013}-x^{2012}+x^{2012}-...-x^3-x^2+x^2+x-1\)

=x-1

=2012-1=2011

AH
Akai Haruma
Giáo viên
7 tháng 5 2019

Lời giải:

Ta có:

\(\left(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}\right)(x-2013)>3x-6039\)

\(\Leftrightarrow \left(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}\right)(x-2013)-(3x-6039)>0\)

\(\Leftrightarrow \left(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}\right)(x-2013)-3(x-2013)>0\)

\(\Leftrightarrow (x-2013)\left(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}-3\right)>0\)

Ta thấy:

\(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}-3=1-\frac{1}{2012}+1-\frac{1}{2013}+1+\frac{2}{2011}-3\)

\(=\frac{1}{2011}-\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2013}>0\)

Do đó, để \( (x-2013)\left(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}-3\right)>0\) thì \(x-2013>0\)

\(\Leftrightarrow x>2013\). Vì $x$ là số nguyên bé nhất nên $x=2014$