Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mk ghi lộn đề rùi
bài 110 sgk trang 49 toán lop 6. Xl nhá
\(VT=\dfrac{1+cos2x}{cos2x}\times\dfrac{1+cos4x}{sin4x}\) (*)
Ta có: theo công thức hạ bậc có: \(cos^2x=\dfrac{1+cos2x}{2}\Leftrightarrow1+cos2x=2cos^2x\) (1)
Ta có: \(cos2x=1-sin^2x\Rightarrow cos4x=1-2sin^22x\) (2)
Tương Tự có \(sin2x=2sinx\times cosx\Rightarrow sin4x=2sin2x\times cos2x\) (3)
Thay (1),(2),(3) vào (*) ta được: \(VT=\dfrac{2cos^2x}{cos2x}\times\dfrac{1+\left(1-2sin^22x\right)}{2sin2x\times cos2x}\)
\(VT=\dfrac{2cos^2x\times2\left(1-sin^22x\right)}{cos^22x\times2sin2x}\) mà \(1-sin^22x=cos^22x\)
\(\Rightarrow VT=\dfrac{2cos^2x\times cos^22x}{cos^22x\times2sinx\times cosx}=\dfrac{cosx}{sinx}=tanx\left(đpcm\right)\)
đoạn cuối nhầm nha \(VT=\dfrac{cosx}{sinx}=cotx\left(đpcm\right)\)
Thay = x ; là y nhé bạn =='.
Theo đề bài ta có :
\(\left\{{}\begin{matrix}x+y=23\\x\cdot y=132\\y-x=1\end{matrix}\right.\left(ĐK:x,y>0\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=23-y\\x\cdot y=132\\y-\left(23-y\right)=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=23-y\\x\cdot y=132\\2y=24\Rightarrow y=12\end{matrix}\right.\)
Thay y = 12 vào hai đẳng thức trên ta được :
\(x+12=23\Rightarrow x=11\) hay \(x\cdot12=132\Rightarrow x=11\)
Vậy \(\left\{{}\begin{matrix}x=11\\y=12\end{matrix}\right.\) hay \(=11\); \(=12\).
Nếu x chắn => x2 \(⋮\) 4 mà 4x \(⋮\) 4
=> VT chia 4 dư 3
2015 chia 4 dư 1 => 20152018 chia 4 dư 1
2010 chia 4 dư 2 => 20102017 chia hết cho 4
=> VP chia 4 dư 1 => vô n0
Nếu x lẻ thì VT chia hết cho 4 VP ko chia hết => vô n0
Vậy pt vô n0
a) -2/3 - 1/3.(2x-5)=3/2
1/3.(2x-5)= -2/3 - 3/2
1/3.(2x-5) = -13/6
2x-5 = -13/6 : 1/3
2x-5 = -13/2
2x = -13/2 + 5 = -3/2
x=-3/2 : 2 = -3/4
Xl pn nh mk chỉ có thể giúp pn câu a thôi
vì nó hơi dài mỏi tay lém nên mk xl nkoa
Câu a hạ bậc rồi áp dụng cosa + cosb
Câu b thì mối liên hệ giữa tan với cot là ra
Ta có: 2. |3x - 1| + 1 = 5
=> 2. |3x - 1| = 5 - 1 = 4
=> |3x - 1| = 4/2 = 2
=> 3x - 1 = 2 hoặc 3x - 1 = -2
+/ 3x - 1 = 2
=> 3x = 2 +1 = 3
=> x = 3/3 =1
+/ 3x - 1 = -2
=> 3x = -2 + 1 = -1
=> x = -1/3
Vậy x thuộc {1; -1/3}.
\(2\left|3x-1\right|+1=5\)
\(\Leftrightarrow2.\left|2x-1\right|=5-1\)
\(\Leftrightarrow\left|2x-1\right|=\dfrac{5-1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=2\\2x-1=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=3\\2x=1\end{matrix}\right.\Leftrightarrow}\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)