Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{2x+3}{5x+2}=\frac{4x+5}{10x+2}\)
\(\Rightarrow\left(2x+3\right).\left(10x+2\right)=\left(5x+2\right).\left(4x+5\right)\)
\(\Rightarrow20x^2+4x+30x+6=10x^2+25x+8x+10\)
\(\Rightarrow34x+6=33x+10\)
\(\Rightarrow34x-33x=-6+10\)
\(\Rightarrow x=4\)
Ta có:
\(\frac{2x+3}{5x+2}=\frac{4x+5}{10x+2}\)
\(\Rightarrow\left(2x+3\right)\left(10x+2\right)=\left(5x+2\right)\left(4x+5\right)\)
\(\Rightarrow20x^2+34x+6=20x^2+33x+10\)
\(\Rightarrow\left(20x^2+34x+6\right)-\left(20x^2+33x+6\right)=\left(20x^2+33x+10\right)-\left(20x^2+33x+6\right)\)
\(\Rightarrow\left(20x^2-20x^2\right)+\left(34x-33x\right)+\left(6-6\right)=\left(20x^2-20x^2\right)+\left(33x-33x\right)+\left(10-6\right)\)
\(\Rightarrow x=4\)
Vậy x = 4.
\(VT=\left|3x+1\right|+\left|3x-5\right|=\left|3x+1\right|+\left|5-3x\right|\ge\left|3x+1+5-3x\right|=6\)
\(VP=\frac{12}{\left(y+3\right)^2+2}\le\frac{12}{2}=6\)
Như vậy \(VT\ge6;VP\le6\)
Mà \(VT=VP\Leftrightarrow VT=VP=6\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}-\frac{1}{3}\le x\le\frac{5}{3}\\y=-3\end{cases}}\)
a) Theo bài ra , ta có : x : y : z = 3 : 5 : ( -2 )
=> \(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\) => \(\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}\) và 5x - y + 3z = -16
Áp dụng t/c của dãy tỉ số = nhau , ta có :
\(\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}=\frac{5x-y+3z}{15-5+\left(-6\right)}=\frac{-16}{-4}=4\)
\(\frac{x}{3}=4\Rightarrow x=4.3=12\\ \frac{y}{5}=4\Rightarrow y=4.5=20\\ \frac{z}{-2}=4\Rightarrow z=-2.4=-8\)
Vậy x = 12 ; y = 20 ; z = -8
a) Ta có : x : y : z = 3 : 5 : (-2) \(\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\Rightarrow\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}=\frac{5x-y+3z}{15-5+-6}=-\frac{16}{4}=-4\)
\(\Rightarrow\begin{cases}\frac{5x}{15}=4\\\frac{y}{5}=4\\\frac{3z}{-6}=4\end{cases}\Rightarrow\begin{cases}5x=4.15\\y=4.5\\3z=4.\left(-6\right)\end{cases}\Rightarrow\begin{cases}5x=60\\y=20\\3z=-24\end{cases}\Rightarrow\begin{cases}x=12\\y=20\\z=-8\end{cases}\)
b) 2x = 3y \(\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\) (1)
5y = 7z \(\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\Rightarrow\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5x}{63-98+50}=\frac{30}{15}=2\)
\(\Rightarrow\begin{cases}\frac{3x}{63}=2\\\frac{7y}{98}=2\\\frac{5z}{50}=2\end{cases}\Rightarrow\begin{cases}3x=2.63\\7y=2.98\\5z=2.50\end{cases}\Rightarrow\begin{cases}3x=126\\7y=196\\5z=100\end{cases}\Rightarrow\begin{cases}x=42\\y=28\\z=20\end{cases}\)
c) x : y : z = 4 : 5 : 6 \(\Rightarrow\frac{x}{4}=\frac{y}{5}=\frac{z}{6}\Rightarrow\frac{x^2}{16}=\frac{y^2}{25}=\frac{z^2}{36}\Rightarrow\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}=\frac{x^2-2y^2+z^2}{16-50+36}=\frac{18}{2}=9\)
\(\Rightarrow\begin{cases}x^2=9.16\\2y^2=9.50\\z^2=9.36\end{cases}\Rightarrow\begin{cases}x^2=144\\y^2=450\div2=225\\z^2=324\end{cases}\Rightarrow\begin{cases}x=\pm12\\y=\pm15\\z=\pm18\end{cases}\)
Vậy x = 12 ; y = 15 ; z = 18
hoặc x = -12 ; y = -15 ; z = -18
đầu bài trên tớ làm luôn nhá !!!
a, / 3x+1/= 5-3
/ 3x+1/= 2
3x+1=2
x+1 = 2:3
x+1 = 2 phần 3
x= 2/3 -1
x= -1/3
=> 4x^2 - 12x + 4 = 2x^2 - 2x - 2 - 2x^2 - 2x - 13
=> 4x^2 - 12x + 4 = - 4x - 15
=> 4x^2 - 12x + 4x + 4 + 15 = 0
=> 4x^2 - 8x + 19 = 0
Đề sai
=> 2x +y =-2.(3x -4y)
=>2x +y=-6x +8y
=>2x +6x= -y+8y
=>8x =7y
=>x/y=7/8
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{6}=\frac{z-3}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{2x-2}{4}=\frac{3y-6}{6}=\frac{z-3}{4}=\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+6-4}=\frac{2x-2+3y-6-z+3}{4+6-4}\)
\(=\frac{\left(2x+3y-z\right)+\left(-2+6+3\right)}{6}=\frac{50+\left(-5\right)}{6}=\frac{45}{6}=7,5\)
\(\frac{x-1}{2}=7,5\Rightarrow x-1=15\Rightarrow x=16\)
\(\frac{y-2}{3}=7,5\Rightarrow y-2=24,5\Rightarrow y=20,5\)
\(\frac{z-3}{4}=7,5\Rightarrow z-3=30\Rightarrow z=33\)
2(x - 3) + 5 = 3x - 1
2x-6+5=3x-1
2x-1=3x-1
2x-3x=-1+1
-x=0
x=0
2x(3x + 2) - 5 = 3( 2x^2 - 2x + 1)
6x2+4x-5=6x2-6x+3
6x2+4x-6x2+6x=3+5
10x=8
x=4/5
(3x - 2)(2x - 3) + 5 = 5
(3x-2)(2x-3)=0
=>3x-2=0 hoặc 2x-3=0
=>x=2/3 hoặc x=3/2
=> \(\left|2x+1\right|=3x-2\)
TH1 : với \(x\ge\frac{-1}{2}\) ta có :
\(2x+1=3x-2\)
<=> \(x=3\)( thoả mãn )
TH2 : với \(x< \frac{-1}{2}\) ta có :
\(-2x-1=3x-2\)
<=> \(5x=1\) <=> \(x=\frac{1}{5}\) ( ko thoả mãn )
Vậy \(x=3\)