K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2016

a) \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{x+y+z}{10+6+21}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

-> \(5x=2\cdot50=100\) => \(x=\frac{100}{5}=20\)

\(y=2\cdot6=12\)

\(2z=2\cdot42=84\) => \(z=\frac{84}{2}=42\)

 

25 tháng 12 2019

 \(\frac{x}{2}\)\(\frac{y}{3}\)\(\frac{y}{4}\)\(\frac{z}{5}\)và x + y - z = 10

\(\Rightarrow\)\(\frac{x}{8}\)\(\frac{y}{12}\)\(\frac{y}{12}\)\(\frac{z}{15}\)

\(\Rightarrow\)\(\frac{x}{8}\)\(\frac{y}{12}\)\(\frac{z}{15}\)

Áp dụng tính chất dãy tỉ số bằng nhau: \(\frac{x}{8}\)\(\frac{y}{12}\)\(\frac{z}{15}\)\(\frac{x+y-z}{8+12-15}\)\(\frac{10}{5}\)= 2

\(\hept{\begin{cases}\frac{x}{8}=2\\\frac{y}{12}=2\\\frac{z}{15}=2\end{cases}}\)\(\Rightarrow\)\(\hept{\begin{cases}x=16\\y=24\\z=30\end{cases}}\)

Vậy x= 16

       y= 24

       z= 30

25 tháng 12 2019

d) 2x = 3y ; 5x = 7z và 3x - 7y + 5x = 3

\(\Rightarrow\)\(\frac{x}{3}\)\(\frac{y}{2}\)\(\frac{x}{7}\)\(\frac{z}{5}\)

\(\Rightarrow\)\(\frac{x}{21}\)\(\frac{y}{14}\)\(\frac{x}{21}\)\(\frac{z}{15}\)

\(\Rightarrow\)\(\frac{x}{21}\)\(\frac{y}{14}\)\(\frac{z}{15}\)

Áp dụng tính chất dãy tỉ  số bằng nhau: \(\frac{x}{21}\)\(\frac{y}{14}\)\(\frac{z}{15}\)\(\Rightarrow\)\(\frac{3x}{63}\)\(\frac{7y}{98}\)\(\frac{5z}{75}\)\(\frac{3x-7y+5z}{63-98+75}\)\(\frac{30}{40}\)=\(\frac{3}{4}\)

\(\hept{\begin{cases}\frac{x}{21}=\frac{3}{4}\\\frac{y}{14}=\frac{3}{4}\\\frac{z}{15}=\frac{3}{4}\end{cases}}\)\(\Rightarrow\)\(\hept{\begin{cases}x=\frac{63}{4}\\y=\frac{21}{2}\\z=\frac{45}{4}\end{cases}}\)

Vậy x= \(\frac{63}{4}\)

      y= \(\frac{21}{2}\)

      z= \(\frac{45}{4}\)

6 tháng 10 2019

a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

 \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\) =>\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{6}=2\\\frac{z}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.10=20\\y=2.6=12\\z=2.21=42\end{cases}}\)

Vậy ...

ê nhỏ tự túc đê

25 tháng 12 2016

a) \(2x=3y=7z\)

\(\Rightarrow\frac{2x}{42}=\frac{3y}{42}=\frac{7z}{42}\)

\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{6}\)

\(\Rightarrow\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{30}\)

Áp dụng tính chất dãy tỉ số bằng nhau , ta có :

\(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{30}=\frac{3x-7y+5z}{63-98+30}=\frac{30}{-5}=-6\)

\(\Rightarrow\hept{\begin{cases}x=21.\left(-6\right)=-126\\y=14.\left(-6\right)=-84\\z=6.\left(-6\right)=-36\end{cases}}\)

25 tháng 12 2016

b) \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{2.4}=\frac{y}{3.4}\Rightarrow\frac{x}{8}=\frac{y}{12}\left(1\right)\)

\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{4.3}=\frac{z}{5.3}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)

Từ 1 và 2 

\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

\(\Rightarrow\hept{\begin{cases}x=2.8=16\\y=2.12=24\\z=2.15=30\end{cases}}\)

29 tháng 10 2017

a) x/5=y/2

= x+y/5+2=21/7=3

=> x/5=3=>x=15

    y/2=3=>x=6

29 tháng 10 2017

1) a) => \(\frac{x}{2}=\frac{y}{5}vàx+y=21\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{21}{7}=3\)

\(\frac{x}{2}=3\Rightarrow x=2\cdot3=6\)

\(\frac{y}{5}=3\Rightarrow y=3\cdot5=15\)

c) =.> \(\frac{x}{7}=\frac{y}{5}vày-x=12\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

\(\frac{x}{7}=\frac{y}{5}=\frac{y-x}{5-7}=\frac{12}{-2}=-6\)

*\(\frac{x}{7}=-6\Rightarrow x=-6\cdot7=-42\)

*\(\frac{y}{5}=-6\Rightarrow y=-6\cdot5=-30\)

5 tháng 8 2016

1. Tìm x, y, z bik 3x = 2y, 7y = 5z và x-y+z = 32
Ta có 3x=2y => x/2=y/3 <=> x/10 = y/15 (1)
7y = 5z => z/7 = y/5 <=> z/21 = y/15 (2)
Từ 1 và 2 ta suy ra x/10 = y/15 = z/21 = (x-y+z)/(10-15+21) = 32/16 = 2
Vậy x = 10*2 = 20
y = 15*2 = 30
z = 21*2 = 42

5 tháng 9 2017

a) \(\frac{x}{10}\)\(\frac{y}{6}\)\(\frac{z}{21}\) và 5x + y - 2z =28

\(\Rightarrow\)\(\frac{5x}{50}\)\(\frac{y}{6}\)\(\frac{2z}{42}\) và 5x + y - 2z=28

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{5x}{50}\)\(\frac{y}{6}\)\(\frac{2z}{42}\)\(\frac{5x+y-2z}{50+6-42}\)\(\frac{28}{14}\)=2

Suy ra:      \(\frac{x}{10}\)\(2\)\(\Rightarrow\)x=20

                  \(\frac{y}{6}\)= 2\(\Rightarrow\)y=12

                   \(\frac{z}{21}\)= 2\(\Rightarrow\)z=42

Vậy...

Hai câu b,c làm tương tự nhé

d) \(\frac{3}{x}\)\(\frac{2}{y}\)\(\frac{7}{y}\)\(\frac{5}{z}\) và x-y+z=32

\(\frac{y}{3}\)\(\frac{x}{2}\)\(\frac{z}{7}\)\(\frac{y}{5}\) và x-y+z=32

\(\frac{y}{15}\)\(\frac{x}{10}\)\(\frac{z}{21}\)\(\frac{y}{15}\) và x-y+z=32

\(\frac{y}{15}\)\(\frac{x}{10}\)\(\frac{z}{21}\) và x-y+z=32

........

1 tháng 11 2017

\(\hept{\begin{cases}\\\end{cases}swss}\)

12 tháng 2 2018

a/

\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)\(=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)\(\Rightarrow x=20;y=12;z=42\)

12 tháng 2 2018

b/\(3x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{3};7y=5z\Leftrightarrow\frac{y}{5}=\frac{z}{7}\)\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+20}=2\)

\(\Rightarrow x=20;y=30;z=42\)