K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2015

10x=6y

=> \(\frac{x}{6}=\frac{y}{10}\)

\(\frac{x^2}{36}=\frac{y^2}{100}\)

\(\frac{2x^2}{72}=\frac{y^2}{100}=\frac{2x^2-y^2}{72-100}=\frac{16}{-28}=\frac{-4}{7}\)

=> x= -4/7.6= -24/7

=> y= -4/7.10=-40/7

13 tháng 10 2015

10x = 6y <=> 5x = 3y \(\Rightarrow\frac{x}{3}=\frac{y}{5}\) 

\(\Rightarrow\frac{2x^2}{18}=\frac{y^2}{25}=\frac{2x^2-y^2}{18-25}=\frac{16}{-7}=\)...

(số hơi lẻ)

17 tháng 2 2017

\(=>\frac{x}{6}=\frac{y}{10}=\frac{2x^2-y^2}{2\cdot6^2-10^2}=\frac{-28}{-28}=1\)\(1\)

\(=>\hept{\begin{cases}x=1\cdot6=6\\y=1\cdot10=10\end{cases}}\)

12 tháng 7 2015

b) Ta có: \(\text{10x=6y=5z}\Rightarrow\frac{10x}{30}=\frac{6y}{30}=\frac{5z}{30}\Leftrightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{6}\) và \(x+y-z=24\)

Áp dụng t/c dãy tỉ số = nhau, ta có: 

\(\frac{x}{3}=\frac{y}{5}=\frac{z}{6}=\frac{x+y-z}{3+5-6}=\frac{24}{2}=12\)

Khi đó:  \(\frac{x}{3}=12\Rightarrow x=36\)

            \(\frac{y}{5}=12\Rightarrow y=60\)

             \(\frac{z}{6}=12\Rightarrow z=72\)

Vậy\(x=36\)      :\(y=60\)          \(z=72\)  

3 tháng 11 2018

thank you

1 tháng 7 2017

đặt \(\frac{x}{5}=\frac{y}{3}\text{ }=k\)

\(\Rightarrow\text{ }x=5k\text{ };\text{ }y=3k\)

\(\Rightarrow\left(5k\right)^2-\left(3k\right)^2=4\)

\(\Rightarrow\text{ }25k^2-9k^2=4\)

\(\Rightarrow\text{ }k^2.\left(25-9\right)=4\)

\(\Rightarrow\text{ }k^2.16=4\)

\(\Rightarrow\text{ }k^2=\frac{1}{4}=\left(\frac{1}{2}\right)^2\)

\(\Rightarrow\text{ }\orbr{\begin{cases}k=\frac{1}{2}\\k=-\frac{1}{2}\end{cases}}\)

Nếu k = \(\frac{1}{2}\)thì \(x=\frac{5}{2}\text{ };\text{ }y=\frac{3}{2}\)

Nếu k = \(-\frac{1}{2}\)thì \(x=\frac{-5}{2}\text{ };\text{ }y=\frac{-3}{2}\)

1 tháng 7 2017

10x = 6y

\(\Rightarrow\text{ }\frac{x}{6}=\frac{y}{10}\)

đặt \(\frac{x}{6}=\frac{y}{10}=k\)

\(\Rightarrow\text{ }x=6k\text{ };\text{ }y=10k\)

\(\Rightarrow\text{ }2.\left(6k\right)^2-\left(10k\right)^2=-28\)

\(\Rightarrow\text{ }72k^2-100k^2=-28\)

\(\Rightarrow\text{ }\left(72-100\right).k^2=-28\)

\(\Rightarrow\text{ }\left(-28\right).k^2=\left(-28\right)\text{ }\)

\(\Rightarrow\text{ }k^2=\left(-28\right)\text{ }:\text{ }\left(-28\right)\)

\(\Rightarrow\text{ }k^2=1\)

\(\Rightarrow\text{ }\orbr{\begin{cases}k=1\\k=-1\end{cases}}\)

Nếu k = 1 thì x = 10 ; y = 6

Nếu k = -1 thì x = -10 ; y = -6

18 tháng 5 2016

10x = 6y => x = 3y/5 
thay vao ta co : 
2(3y/5)^2 - y^2 = -28 
<=> 18y^2/25 - y^2 = -28 
<=> 7y^2 = 700 
<=> y = 10 
=> x = 6 

18 tháng 5 2016

\(10x=6y\) => \(x=\frac{6y}{10}=\frac{3y}{5}\)

=> \(2x^2-y^2=2\times\left(\frac{3y}{5}\right)^2-y^2=-28\)

<=> \(2\times\frac{9y^2}{25}-y^2=-28\)

<=> \(\frac{18y^2}{25}-y^2=-28\)

<=> \(\frac{-7y^2}{25}=-28\)

<=> \(-7y^2=-700\)

<=> \(y^2=100\)

<=> \(y=10;x=6\) hoặc \(y=-10;x=-6\)

11 tháng 12 2016

10x=6y=>x/6=y/10=>2x^2/72=y^2/100

áp dụng tính chất dãy tỉ số bang nhau ta có

\(^{2x^2}_{72}\)=\(^{y^2}_{100}\)=2x^2-y^2/72-100=-28/-28=1

=>x=6,y=10

11 tháng 12 2016

10x=6y suy ra y/10 = x/6 suy ra y^2/100= x^2/36 suy ra y^2/100=2.x^2/72

2x^2-y^2= -28 nên y^2 -2x^2=28

y^2/100= 2x^2/72 =( y^2 - 2x^2)/(100-72)= 28/28 =1

ý^2/100=1 suy ra y^2=100 suy ra ý=10 hoặc ý=-10

2x^2/72=1 suy ra 2x^2=72 suy ra x^2= 36 suy ra x=6 hoặc x= -6

18 tháng 10 2016

a)\(10x=6y\Rightarrow\frac{x}{6}=\frac{y}{10}\Rightarrow\frac{x^2}{36}=\frac{2x^2}{72}=\frac{y^2}{100}\)

Áp dụng tính chất của dãy tỉ số bằng nhau: \(\frac{x^2}{36}=\frac{2x^2}{72}=\frac{y^2}{100}=\frac{2x^2-y^2}{72-100}=\frac{-28}{-28}=1\)

\(\Rightarrow\hept{\begin{cases}x^2=1.36=36\\y^2=1.100=100\end{cases}}\Rightarrow\orbr{\begin{cases}\left(x;y\right)=\left(-6;-10\right)\\\left(x;y\right)=\left(6;10\right)\end{cases}}\)

b)\(\frac{x}{2}=\frac{y}{5}\Rightarrow\frac{x^2}{4}=\frac{y^2}{25}\)

Áp dụng tính chất của dãy tỉ số bằng nhau: \(\frac{x^2}{4}=\frac{y^2}{25}=\frac{x^2-y^2}{4-25}=\frac{4}{-21}\)

\(\Rightarrow\hept{\begin{cases}x^2=\frac{4}{-21}.4=-21\\y^2=\frac{4}{-21}.25=\frac{100}{-21}\end{cases}}\)

Vì \(\hept{\begin{cases}x^2\ge0\\y^2\ge0\end{cases}}\) nên ko có số x;y thỏa mãn 

Có thể bạn chép sai đề phần b rồi

18 tháng 10 2016

thanks để mk tha

21 tháng 11 2015

1) \(35x=21y\Rightarrow\frac{21}{35}=\frac{x}{y}=\frac{3}{5}=>\frac{x}{3}=\frac{y}{5}\) (1)

\(21y=15z\Rightarrow\frac{15}{21}=\frac{y}{z}=\frac{5}{7}\Rightarrow\frac{y}{5}=\frac{z}{7}\)(2)

Từ (1) và (2) => \(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}=\frac{x+y-z}{3+5-7}=\frac{27}{1}=27\)

=> \(\frac{x}{3}=27\Rightarrow x=27.3=81\)

\(\frac{y}{5}=27\Rightarrow y=27.5=135\)

\(\frac{z}{7}=27\Rightarrow z=27.7=189\)

2) \(10x=6y\Rightarrow\frac{6}{10}=\frac{x}{y}=\frac{3}{5}\Rightarrow\frac{x}{3}=\frac{y}{5}\) (1)

\(6y=5z\Rightarrow\frac{5}{6}=\frac{y}{z}\Rightarrow\frac{y}{5}=\frac{z}{6}\)(2)

Từ (1) và (2) => \(\frac{x}{3}=\frac{y}{5}=\frac{z}{6}\)

(còn phần dưới thì tự tính ra x, y, z đc rồi đó ^^)

17 tháng 5 2017

Ta có: \(10x=6y\) \(\Leftrightarrow x=\frac{6y}{10}=\frac{3y}{5}\)

\(\Rightarrow2x^2-y^2=2\times\left(\frac{3y}{5}\right)^2-y^2=-28\)

\(\Leftrightarrow2\times\frac{9y^2}{25}-y^2=\frac{18y^2}{25}-y^2=-28\)

\(\Leftrightarrow\frac{-7y^2}{25}=-28\Leftrightarrow-7y^2=-700\Leftrightarrow y^2=100\)

\(\Leftrightarrow x=10\) và \(y=6\) hoặc \(x=-10\) và \(y=-6\)