K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

x/y=3/4

=>x/3=y/4

=>x/15=y/20

y/z=5/7

=>y/5=z/7

=>y/20=z/28

=>x/15=y/20=z/28=(2x+3y-z)/(2*15+3*20-28)=186/62=3

=>x=45; y=60; z=84

13 tháng 3 2023

cảm ơn bạn nhiều

 

16 tháng 10 2020

Mk cần gấp để nộp ạ

10 tháng 8 2020

Ta có : \(\frac{3}{x-1}=\frac{4}{y-2}=\frac{5}{z-3}\Rightarrow1:\frac{3}{x-1}=1:\frac{4}{y-2}=1:\frac{5}{z-3}\)

\(\Rightarrow\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}\)

Đặt \(\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}=k\Rightarrow\hept{\begin{cases}x=3k+1\\y=4k+2\\z=5k+3\end{cases}}\)

Khi đó x + y + z = 18 

<=> 3k + 1 + 4k + 2 + 5k + 3 = 18

=> 12k + 6 = 18

=> 12k = 12

=> k = 1

=> x = 4 ; y = 6 ; z = 8

11 tháng 8 2020

                                                  Bài giải

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{3}{x-1}=\frac{4}{y-2}=\frac{5}{z-3}=\frac{3+4+5}{x-1+y-2+z-3}=\frac{12}{12}=1\)

\(\Rightarrow\text{ }\hept{\begin{cases}x=3\text{ : }1+1=4\\y=4\text{ : }1+2=6\\z=5\text{ : }1+3=8\end{cases}}\)

\(\Rightarrow\text{ }x=4\text{ ; }y=6\text{ ; }z=8\)

\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{2}\) và \(x-3y=20\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\dfrac{x}{5}=\dfrac{3y}{9}=\dfrac{z}{2}=\dfrac{x-3y}{5-9}=\dfrac{20}{-4}=-5\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{5}=-5< =>x=-25\\\dfrac{y}{3}=-5< =>y=-15\\\dfrac{z}{2}=-5< =>z=-10\end{matrix}\right.\)

Vậy ....

a) Ta có: \(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\)

nên \(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{2x}{3}=12\\\dfrac{3y}{4}=12\\\dfrac{4z}{5}=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=36\\3y=48\\4z=60\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=18\\y=16\\z=20\end{matrix}\right.\)

Vậy: (x,y,z)=(18;16;20)

b) Đặt \(\dfrac{x}{5}=\dfrac{y}{3}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=5k\\y=3k\end{matrix}\right.\)

Ta có: \(x^2-y^2=4\)

\(\Leftrightarrow\left(5k\right)^2-\left(3k\right)^2=4\)

\(\Leftrightarrow16k^2=4\)

\(\Leftrightarrow k\in\left\{\dfrac{1}{2};-\dfrac{1}{2}\right\}\)

Trường hợp 1: \(k=\dfrac{1}{2}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=5k=5\cdot\dfrac{1}{2}=\dfrac{5}{2}\\y=3k=3\cdot\dfrac{1}{2}=\dfrac{3}{2}\end{matrix}\right.\)

Trường hợp 2: \(k=-\dfrac{1}{2}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=5k=5\cdot\dfrac{-1}{2}=\dfrac{-5}{2}\\y=3k=3\cdot\dfrac{-1}{2}=\dfrac{-3}{2}\end{matrix}\right.\)

Vậy: \(\left(x,y\right)\in\left\{\left(\dfrac{5}{2};\dfrac{3}{2}\right);\left(-\dfrac{5}{2};-\dfrac{3}{2}\right)\right\}\)

 

3 tháng 7 2021

a)

 

Theo tính chất của dãy tỉ số bằng nhau, ta có : 

\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)

Suy ra : 

\(x=\dfrac{12.3}{2}=18\\ y=\dfrac{12.4}{3}=16\\ z=\dfrac{12.5}{4}=15\)

b)

\(x=\dfrac{y}{3}.5=\dfrac{5y}{3}\\ x^2-y^2=4\\ \Leftrightarrow\left(\dfrac{5y}{3}\right)^2-y^2=4\\ \Leftrightarrow\dfrac{16y^2}{9}=4\Leftrightarrow y=\pm\dfrac{3}{2} \)

Với $y = \dfrac{3}{2}$ thì $x = \dfrac{5}{2}$

Với $y = \dfrac{-3}{2}$ thì $x = \dfrac{-5}{2}$

c)

\(\dfrac{x}{y+z+1}=\dfrac{y}{z+x+1}=\dfrac{z}{x+y-2}=\dfrac{x+y+z}{2x+2y+2z}=\dfrac{1}{2}\)

Suy ra : 

\(2x=y+z+1\Leftrightarrow y+z=2x-1\)

Mặt khác : 

\(x+y+z=\dfrac{1}{2}\Leftrightarrow x+2x-1=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{2}\)

\(2y=x+z+1=z+\dfrac{3}{2}\)

Mà \(y+z=0\Leftrightarrow z=-y\)

nên suy ra:  \(y=\dfrac{1}{2};z=-\dfrac{1}{2}\)

NV
20 tháng 1 2024

Áp dụng t/c dãy tỉ số bằng nhau:

a.

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{2x}{6}=\dfrac{4y}{20}=\dfrac{2x+4y}{6+20}=\dfrac{28}{26}=\dfrac{14}{13}\)

\(\Rightarrow\left\{{}\begin{matrix}x=3.\dfrac{14}{13}=\dfrac{52}{13}\\y=5.\dfrac{14}{13}=\dfrac{70}{13}\end{matrix}\right.\)

(Em có nhầm đề 26 thành 28 ko nhỉ, số xấu quá)

b.

\(4x=5y\Rightarrow\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{3x}{15}=\dfrac{-2y}{-8}=\dfrac{3x-2y}{15-8}=\dfrac{35}{7}=5\)

\(\Rightarrow\left\{{}\begin{matrix}x=5.5=25\\y=4.2=20\end{matrix}\right.\)

c.

\(\dfrac{x}{-3}=\dfrac{y}{-7}=\dfrac{2x}{-6}=\dfrac{4y}{-28}=\dfrac{2x+4y}{-6-28}=\dfrac{68}{-34}=-2\)

\(\Rightarrow\left\{{}\begin{matrix}x=-3.\left(-2\right)=6\\y=-7.\left(-2\right)=14\end{matrix}\right.\)

d.

\(\dfrac{x}{2}=\dfrac{y}{-3}=\dfrac{z}{4}=\dfrac{4x}{8}=\dfrac{-3y}{9}=\dfrac{-2z}{-8}=\dfrac{4x-3y-2z}{8+9-8}=\dfrac{16}{9}\)

\(\Rightarrow\left\{{}\begin{matrix}x=2.\dfrac{16}{9}=\dfrac{32}{9}\\y=-3.\dfrac{16}{9}=-\dfrac{48}{9}\\z=4.\dfrac{16}{9}=\dfrac{64}{9}\end{matrix}\right.\)

1 tháng 8 2018

\(\left|x-1\right|+\left|y+2\right|+\left|z-3\right|=0\)

Ta có: \(\hept{\begin{cases}\left|x-1\right|\ge0\forall x\\\left|y+2\right|\ge0\forall x\\\left|z-3\right|\ge0\forall x\end{cases}\Rightarrow\left|x-1\right|+\left|y+2\right|+\left|z-3\right|\ge0\forall x;y;z}\)

Mà \(\left|x-1\right|+\left|y+2\right|+\left|z-3\right|=0\)

\(\hept{\begin{cases}\left|x-1\right|=0\\\left|y+2\right|=0\\\left|z-3\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\\z=3\end{cases}}\)

Vậy \(x=1;y=-2;z=3\)

1 tháng 10 2017

\(\Rightarrow\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}=\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{2x}{10.2}=\frac{3y}{15.3}=\frac{z}{21}=\frac{2x}{20}=\frac{3y}{45}=\frac{z}{21}=\frac{2x+3y+z}{20+45+21}=\frac{172}{86}=2\)

\(\frac{x}{10}=2\Rightarrow x=2.10=20\)

\(\frac{y}{15}=2\Rightarrow y=2.15=30\)

\(\frac{z}{21}=2\Rightarrow z=2.21=42\)

Vậy x=20 ; y=30 và z=42

2 tháng 9 2018

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405

6 tháng 11 2017

đề bài là j vậy

2 tháng 9 2018

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405

25 tháng 9 2018

a,\(\frac{x}{4}=\frac{y}{2}=\frac{z}{3}\Leftrightarrow\frac{3x}{12}=\frac{2y}{4}=\frac{4z}{12}\)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{3x}{12}=\frac{2y}{4}=\frac{4z}{12}=\frac{3x-2y+4z}{12-4+12}=\frac{20}{20}=1\)

Suy ra:\(\hept{\begin{cases}\frac{x}{4}=1\\\frac{y}{2}=1\\\frac{z}{3}=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=2\\z=3\end{cases}}\)

25 tháng 9 2018

b, Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{x}{2}=\frac{y}{6}=\frac{x-y}{2-6}=\frac{10}{-4}=-\frac{5}{2}\)

Suy ra:\(\hept{\begin{cases}\frac{x}{2}=-\frac{5}{2}\\\frac{y}{6}=-\frac{5}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-15\end{cases}}}\)