Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
=> x = 20
y = 12
z = 42
a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\) =>\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{6}=2\\\frac{z}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.10=20\\y=2.6=12\\z=2.21=42\end{cases}}\)
Vậy ...
\(a.\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\) và \(2x+3y-z=186\)
Từ \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{3}\times\frac{1}{5}=\frac{y}{4}\times\frac{1}{5}=\frac{x}{15}=\frac{y}{20}\left(1\right)\)
Từ \(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{5}\times\frac{1}{4}=\frac{z}{7}\times\frac{1}{4}=\frac{y}{20}=\frac{z}{28}\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\)\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
Đặt \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=k\)
\(\Rightarrow\hept{\begin{cases}x=15k\\y=20k\\z=28k\end{cases}}\)
Lại có : \(2x+3y-z=186\)
Thay vào ta có :
\(2.15k+3.20k-28k=186\)
\(30k+60k-28k=186\)
\(62k=186\)
\(k=3\)
Thay vào ta được :
\(\Rightarrow\hept{\begin{cases}x=15.3=45\\y=20.3=60\\z=28.3=84\end{cases}}\)
Vậy .....
b. Câu hỏi của Nguyen Hai Bang - Toán lớp 7 - Học toán với OnlineMath
Bài giải
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\)\(=\frac{5x+y-2z}{10\cdot5+6-21\cdot2}\)\(=\frac{28}{14}=2\)
\(=\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{6}=2\\\frac{z}{21}=2\end{cases}}\Rightarrow\hept{\begin{cases}x=20\\y=12\\z=42\end{cases}}\)
Ta có :
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x+y-2z}{10.5+6-21.2}=\frac{28}{14}\)\(=2\)
\(=\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{6}=2\\\frac{z}{21}=2\end{cases}}\Rightarrow\hept{\begin{cases}x=20\\y=12\\z=42\end{cases}}\)
Ủng hộ mk nha !!! ^_^
a/
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)\(=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)\(\Rightarrow x=20;y=12;z=42\)
b/\(3x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{3};7y=5z\Leftrightarrow\frac{y}{5}=\frac{z}{7}\)\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+20}=2\)
\(\Rightarrow x=20;y=30;z=42\)
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
\(.\frac{x}{10}=2\Rightarrow x=20\)
\(.\frac{y}{6}=2\Rightarrow y=12\)
\(.\frac{z}{21}=2\Rightarrow z=42\)
Vậy............
\(\frac{x}{10}\)= \(\frac{5x}{50}\)
\(\frac{z}{21}\)= \(\frac{2z}{42}\)
Theo tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{5x}{50}\)= \(\frac{y}{6}\)= \(\frac{2z}{42}\)= \(\frac{5x+y-2z}{50+6-42}\)= \(2\)
Vậy :
\(\frac{x}{10}\)= 2 nên x=20
\(\frac{y}{6}\)= 2 nên y= 12
\(\frac{z}{21}\)= 2 nên z= 42
Ta có :
\(\frac{x}{10}\)=\(\frac{y}{6}\)=\(\frac{z}{21}\)=\(\frac{5x}{50}\)=\(\frac{y}{6}\)=\(\frac{2z}{42}\)=\(\frac{5x+y-2z}{50+6-21}\)=\(\frac{28}{14}\)=2
=>\(\frac{x}{10}\)=2 => x=20
=>\(\frac{y}{6}\)=2 => y=12
=>\(\frac{z}{21}\)=2 => z=42
Vậy x=20,y=12,z=42