Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\dfrac{2x+1}{5}\)=\(\dfrac{4y-5}{9}\)=\(\dfrac{2x+4y-4}{7x}\)=
\(\dfrac{2x+1+4y-5}{14}\)=\(\dfrac{2y+4y-4}{14}\)
Từ \(\dfrac{2x+4y-4}{14}\)=\(\dfrac{2x+4y-4}{7x}\)\(\Rightarrow\)14=7x\(\Rightarrow\)x=2\(\Rightarrow\)\(\dfrac{2x+1}{5}\)=\(\dfrac{4y-5}{9}\)=1
\(\dfrac{2x+1}{5}=\dfrac{4y-5}{9}=\dfrac{2x+4y-4}{7x\left(?\right)}\) lớp 7 sao khó vậy
\(a,\dfrac{x+1}{3}=\dfrac{y+2}{2}=\dfrac{z+9}{1}\)
Áp dụng t.c của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x+1}{3}=\dfrac{y+2}{2}=\dfrac{z+9}{1}=\dfrac{x-y-z+1-2-9}{3-2-1}=\dfrac{22-10}{0}\left(loại\right)\)
Vậy \(x;y;z\in\varnothing\)
2) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{1+2y}{18}=\dfrac{1+6y}{6x}=\dfrac{1+2y+1+6y}{18+6x}=\dfrac{2\left(1+4y\right)}{2\left(9+3x\right)}=\dfrac{1+4y}{9+3x}\)
⇒ \(\dfrac{1+4y}{9+3x}=\dfrac{1+4y}{28}\)
⇒\(9+3x=28\)
⇒\(3x=19\)
⇒\(x=\dfrac{19}{3}\)
bạn thay vào là tìm được y
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{2x+1}{5}=\frac{4y-2}{7}=\frac{2x+4y-1}{6x}=\frac{\left(2x+1\right)+\left(4y-2\right)}{5+7}=\frac{2x+4y-1}{12}\)
\(\Rightarrow\frac{2x+4y-1}{6x}=\frac{2x+4y-1}{12}\)
\(\Rightarrow6x=12\)
\(\Rightarrow x=2\)
Thay x = 2 , ta được :
\(\frac{2x+1}{5}=\frac{4y-2}{7}\)
hay \(1=\frac{4y-2}{7}\Rightarrow4y-2=7\Rightarrow4y=9\Rightarrow y=\frac{9}{4}\)
Vậy x = 2 ; y = \(\frac{9}{4}\)
\(x=-\dfrac{1}{2}=-0.5,y=\dfrac{5}{4}=1.25\\x=2,y=\dfrac{7}{2}=3.5\)