K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2016

a) Đặt 2x - 1 / 5 = 3y + 2 / 4 = 4z - 3 / 5 = k

=> 2x = 5k + 1; 3y = 4k - 2; 4z = 5k + 3

=> 2x - 3y + 4z = 5k + 1 - 4k - 2 + 5k + 3 = 6k + 2 = 9

=> 6k = 9 - 2 = 7

=> k = 7 : 6 = 7/6

2x =5k

11 tháng 10 2016

Xĩn lỗi, mik ấn nhầm

6 tháng 6 2016

a) Theo tính chất của dãu tỉ số bằng nhau, ta có:

\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{15}\)

=> 6x = 15

=> x = 5/2

Thay x = 5/2, ta có:

\(\frac{2.\frac{5}{2}+1}{5}=\frac{3y-2}{7}\)

\(\Rightarrow\frac{3y-2}{7}=\frac{6}{5}\)

\(\Rightarrow3y-2=\frac{6}{5}.7=\frac{42}{5}\)

\(\Rightarrow3y=\frac{52}{5}\)

\(\Rightarrow y=\frac{52}{15}\)

Mình ăn cơm đây, câu b tối làm cho

9 tháng 7 2017

Viết lại thành : \(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}\)

Dựa theo tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)

-> x = \(12.\dfrac{3}{2}=18\)

y =\(12.\dfrac{4}{3}=16\)

z =\(12.\dfrac{5}{4}\) = 15

31 tháng 8 2021

a, \(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)

Theo tính chất dãy tỉ số bằng nhau 

\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\Rightarrow x=27;y=36;z=60\)

b, \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Rightarrow\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)

Theo tính chất dãy tỉ số bằng nhau 

\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)

\(\Rightarrow x=18;y=24;z=30\)

31 tháng 8 2021

c, \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-4}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-4}{4}\)

Theo tính chất dãy tỉ số bằng nhau 

\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-4}{4}=\frac{2x+3y-z-2-6+4}{4+9-4}=\frac{46}{9}\)

\(\Rightarrow x=\frac{101}{9};y=\frac{52}{3};z=\frac{220}{9}\)

d, Đặt \(x=2k;y=3k;z=5k\Rightarrow xyz=810\Rightarrow30k^3=810\)

\(\Leftrightarrow k^3=27\Leftrightarrow k=3\)Với k = 3 thì \(x=6;y=9;z=15\)

22 tháng 11 2017

ĐK: x,y,z khác 0 
Từ 2x=-3y => x=-3/2y và -3y =4z => z=-3/4y thay vào pt đầu ta được 
-2/3y + 1/y - 4/3y =3 <=> y=-1/3 => x=1/2 và z =1/4 
 

18 tháng 8 2019

\(2x=-3y=4z\Leftrightarrow\hept{\begin{cases}x=-\frac{3y}{2}\\z=\frac{-3y}{4}\end{cases}}\)

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\)\(\Rightarrow\frac{1}{\left(-\frac{3y}{2}\right)}+\frac{1}{y}+\frac{1}{\left(-\frac{3y}{4}\right)}=3\)

\(\Leftrightarrow\frac{-2}{3y}+\frac{1}{y}-\frac{4}{3y}=3\)

Giải y sau đó tìm x và z nhá

có sai thì thông cảm mk nha

27 tháng 9 2019

Ta có : 3x = 2y => x/2 = y/3

7x = 5z => x/5 = z/7

 => x/2 = y/3 ; x/5 = z/7

 => x/10 = y/15 ; x/10 = z/21

 => x/10 = y/15 = z/21

 Áp dụng tính chất dãy tỉ số bằng nhau :

 x/10 = y /15 = z/21 = (x-y+z)/(10-15+21) = 32/16 = 2

đến đây xét x,y,z

 Câu b tương tự

22 tháng 8 2019

\(2x=-3y=4z\)

\(\Rightarrow\frac{2}{\frac{1}{x}}=\frac{-3}{\frac{1}{y}}=\frac{4}{\frac{1}{z}}=\frac{2-3+4}{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}=\frac{3}{3}=1\)

\(\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{-1}{3}\\z=\frac{1}{4}\end{cases}}\)

\(2x=-3y=4z\Rightarrow\frac{2}{\frac{1}{x}}=\frac{-3}{\frac{1}{y}}=\frac{4}{\frac{1}{z}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau t có 

\(\frac{2}{\frac{1}{x}}=\frac{-3}{\frac{1}{y}}=\frac{4}{\frac{1}{z}}=\frac{2-3+4}{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}=\frac{3}{3}=1\)

\(\Rightarrow x=\frac{1}{2};y=-\frac{1}{3};z=\frac{1}{4}\)

BẠn Marakal KC ơi 

em nó mới lớp 7 chứ không như lớp 9 lớp 10 mk nên đừng làm tắt qua nha 

Study well