Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
làm bừa thui,ai tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
a) 5x+2 = 125
=> 5x+2 = 53
=> x + 2 = 3
=> x = 1
Vậy ...
b) 3x+2 + 3x = 810
=> 3x + 3x . 32 = 810
=> 3x . ( 1 + 32 ) = 810
=> 3x . 10 = 810
=> 3x = 81
=> 3x = 34
=> x = 4
Vậy ...
c) 2x+2 - 2x = 192
=> 2x . 22 - 2x . 1 = 192
=> 2x . ( 22 - 1 ) = 192
=> 2x . 3 = 192
=> 2x = 64
=> 2x = 26
=> x = 6
Vậy ...
a)
5x+2 = 125
5x+2 = 53
=> x + 2 = 3
x = 1.
Vậy x = 1.
b)
3x+2 + 3x = 810
3x . ( 32 + 1 ) = 810
3x . ( 9 + 1 ) = 810
3x . 10 = 810
3x = 81
3x = 34
=> x = 4.
Vậy x = 4.
c)
2x+2 - 2x = 192
2x . ( 22 - 1 ) = 192
2x . 3 = 192
2x = 64
2x = 26
=> x = 6.
Vậy x = 6.
d)
2x + 2y = 2x+y
2x + 2y - 2x+y = 0
( 2x - 2x+y ) + 2y = 0
2x . ( 1 - 2y ) + ( 2y - 1 ) = -1
( 1 - 2y ) . ( 2x - 1 ) = -1.
=> 1 - 2y và 2x - 1 là các ước nguyên của -1. ( vì x , y là các stn )
Các ước nguyên của -1 là : -1 ; 1.
Ta có bảng sau:
Bảng | Ở |
Phía | Dưới |
1 - 2y | 1 | -1 |
2x - 1 | -1 | 1 |
y | 0 | 1 |
x | 0 | 1 |
Thử lại , ta có : x = 1; y = 1 TM đề bài.
Vậy x = 1 ; y = 1.
a) 2x + 124 = 5y
Ta thấy : 5y luôn lẻ (\(\forall\)y) => 2x + 124 cũng là số lẽ
Mà 124 là số chẵn => 2x là số lẽ => x = 0
Với x = 0 => 20 + 124 = 5y
=> 1 + 124 = 5y
=> 125 = 5y
=> 5y = 53
=> y = 3
Vậy x = 0; y = 3 thõa mãn
b) Ta có: 10x + 168 = y2
=> 10x = y2 - 168
+) Nếu y là số lẻ => y2 là số lẻ
=> y2 - 168 lẻ
=> 10x lẻ => x = 0
Với x = 0 => 100 + 168 = y2
=> 1 + 168 = y2 => 169 = y2
=> y2 = 132
=> \(\orbr{\begin{cases}y=13\\y=-13\end{cases}}\)
+) Nếu y chẵn => y2 chẵn
=> y2 - 168 chẵn
=> 10x chẵn
Do 10x \(⋮\) 10 => y2 - 168 \(⋮\)10
Mà y2 là số chính phương (ko có tận cùng là 8)
=> y2 - 168 ko \(⋮\) 10
=> pt vô nghiệm
Vậy x = 0 và y = 13 hoặc x - 0 và y = -13 thõa mãn
Xét đề bài là tìm x y là số tự nhiên
a) \(2^x+124=5^y\)
+) Với x=0
ta có:
\(2^0+124=5^y\)
\(5^y=125=5^3\)
y=3
+) Với x>0 => y>3
Ta có: \(2^x+124⋮2\)
và \(5^y\) không chia hết cho 2
=> phương trình vô nghiệm
Vậy x=0; y=3
b) \(10^x+168=y^2\)
+) Với x=0 thay vào ta có:
\(y^2=169=13^2\Rightarrow y=13\)
+) Với x>0 => y>13
\(10^x+168=y^2\)
Ta có VT chia 10 dư 8
VP là số chính phương chia 10 không thể dư 8 được
=> phương trình vô nghiệm
Vậy x=0 và y=13 thỏa mãn