K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2017

a) \(x^2-8x+y^2+6y+25=0\)

\(\left(x-8\right)x+y\left(y+6\right)+25=0\)

\(x^2+y^2+6y+25=8x\)

\(\Rightarrow x=4,y=-3\)

3 tháng 6 2017

b )​4x2-4x+9y2 -12y +5

<=> [( 2x )2​ - 4x + 1 ] [ (3y) 2 ​- 12y + 4 )] = 0

<=> ( 2x - 1 )2 ​ + ( 3y - 2 )2​ =0   ( Vì (2x -1)2 ​>=0 , ( 3y - 2 )2 >= 0 )

<=> 2x - 1 = 0 và 3y -2 = 0

<=> x = 1/2     và y = 2/3

26 tháng 10 2018

Xin câu a :3

a) (x + y + 1)2 = 3(x2 + y2) + 1

<=> x2 + y2 + 1 + 2xy + 2x + 2y = 3x2 + 3y2 + 1

<=> 2x2 + 2y2 - 2xy - 2x - 2y = 0

<=> (x2 - 2xy + y2) + (x2 - 2x + 1) + (y2 - 2y + 1) = 2

<=> (x - y)2 + (x - 1)2 + (y - 1)2 = 2

Vì 2 = 02 + 12 + 12 nên ta có các TH sau:

TH1:

\(\left\{{}\begin{matrix}\left(x-y\right)^2=0\\\left(x-1\right)^2=1\\\left(y-1\right)^2=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=y=2\\x=y=0\end{matrix}\right.\)

TH2:

\(\left\{{}\begin{matrix}\left(x-y\right)^2=1\\\left(x-1\right)^2=0\\\left(y-1\right)^2=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1;y=0\\x=1;y=2\end{matrix}\right.\)

TH3:

\(\left\{{}\begin{matrix}\left(x-y\right)^2=1\\\left(x-1\right)^2=1\\\left(y-1\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2;y=1\\x=0;y=1\end{matrix}\right.\)

Vậy ...

26 tháng 10 2018

a) ta có : \(\left(x+y+1\right)^2=3\left(x^2+y^2\right)+1\)

\(\Leftrightarrow x^2+y^2+1+2xy+2y+2x=3x^2+3y^2+1\)

\(\Leftrightarrow-\left(x-1\right)^2-\left(y-1\right)^2=\left(x-y\right)^2-2\le0\)

\(\Leftrightarrow-\sqrt{2}\le x-y\le\sqrt{2}\) --> ...

b) \(\left(2x-y-2\right)^2=7\left(x-2y-y^2-1\right)\)

\(\Leftrightarrow4x^2+y^2+4-4xy+4y-4x=7x-14y-7y^2-7\)

\(\Leftrightarrow2x^2-4xy+2y^2+2x^2-11x+\dfrac{121}{16}+6y^2+18y+\dfrac{9}{4}=\dfrac{-19}{16}\left(vl\right)\)

câu c tương tự .

3 tháng 7 2017

1. \(f\left(x\right)=25x^2-20x+\dfrac{9}{2}\)

=>\(f\left(x\right)=25x^2-20x+4+\dfrac{1}{2}\)

=> \(f\left(x\right)=(25x^2-20x+4)+\dfrac{1}{2}\)

=> \(f\left(x\right)=(5x-2)^2+\dfrac{1}{2}\)

Ta thấy: \((5x-2)^2\ge0\)

=>\(f\left(x\right)=(5x-2)^2+\dfrac{1}{2}\ge\dfrac{1}{2}>0\)(đpcm)

2. \(f\left(x\right)=4x^2-28x+50\)

=> \(f\left(x\right)=(4x^2-28x+49)+1\)

=> \(f\left(x\right)=(2x-7)^2+1\)

Ta thấy: \((2x-7)^2\ge0\)

=> \(f\left(x\right)=(2x-7)^2+1\ge1>0\) (đpcm)

3. \(f\left(x\right)=-16x^2+72x-82\)

=> \(f\left(x\right)=-(16x^2-72x+82)\)

=> \(f\left(x\right)=-(16x^2-72x+81+1)\)

=> \(f\left(x\right)=-[(4x-9)^2+1]\)

Ta thấy: \((4x-9)^2\ge0\)

=> \((4x-9)^2+1\ge1>0\)

=> \(f\left(x\right)=-[(4x-9)^2+1]< 0\)

5. \(f\left(x;y\right)=4x^2+9y^2-12x+6y+11\)

=> \(f\left(x;y\right)=4x^2+9y^2-12x+6y+9+1+1\)

=> \(f\left(x;y\right)=(4x^2-12x+9)+(9y^2+6y+1)+1\)

=> \(f\left(x;y\right)=(2x-3)^2+(3y+1)^2+1\)

Ta thấy: \((2x-3)^2\ge0\)

\((3y+1)^2\ge0\)

=> \(f\left(x;y\right)=(2x-3)^2+(3y+1)^2+1\) \(\ge1>0\) (đpcm)

c: =>(2x+3y-1)^2+(2x-3y)=0

=>2x-3y=0 và 2x+3y=1

=>x=1/4; y=1/6

d: =>2y-3=0 và 2x+3y-1=0

=>y=3/2 và 2x=1-3y=1-9/2=-7/2

=>x=-7/4 và y=3/2

Bài 1: Phân tích đa thức thành nhân tử: a) \(2x\left(x+1\right)+2\left(x+1\right)\) b) \(y^2\left(x^2+y\right)-zx^2-zy\) c) \(4x\left(x-2y\right)+8y\left(2y-x\right)\) d) \(3x\left(x+1\right)^2-5x^2\left(x+1\right)+7\left(x+1\right)\) e) \(x^2-6xy+9y^2\) f) \(x^3+6x^2y+12xy^2+8y^3\) g) \(x^3-64\) h) \(125x^3+y^6\) k) \(0,125\left(a+1\right)^3-1\) t) \(x^2-2xy+y^2-xz+yz\) q) \(x^2-y^2-x+y\) p) \(a^3x-ab+b-x\) đ)...
Đọc tiếp

Bài 1: Phân tích đa thức thành nhân tử:

a) \(2x\left(x+1\right)+2\left(x+1\right)\)

b) \(y^2\left(x^2+y\right)-zx^2-zy\)

c) \(4x\left(x-2y\right)+8y\left(2y-x\right)\)

d) \(3x\left(x+1\right)^2-5x^2\left(x+1\right)+7\left(x+1\right)\)

e) \(x^2-6xy+9y^2\)

f) \(x^3+6x^2y+12xy^2+8y^3\)

g) \(x^3-64\)

h) \(125x^3+y^6\)

k) \(0,125\left(a+1\right)^3-1\)

t) \(x^2-2xy+y^2-xz+yz\)

q) \(x^2-y^2-x+y\)

p) \(a^3x-ab+b-x\)

đ) \(3x^2\left(a+b+c\right)+36xy\left(a+b+c\right)+108y^2\left(a+b+c\right)\)

l) \(x^2-x-6\)

i) \(x^4+4x^2-5\)

m) \(x^3-19x-30\)

j) \(x^4+x+1\)

y) \(ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)\)

o) \(\left(a+b+c\right)^3-a^3-b^3-c^3\)

ê) \(4a^2b^2-\left(a^2+b^2+c^2\right)^2\)

w) \(\left(1+x^2\right)^2-4x\left(1-x^2\right)\)

z) \(\left(x^2-8\right)^2+36\)

u) \(81x^4+4\)

Bài 2 : Tìm x

a)\(\left(2x-1\right)^2-25=0\)

b) \(8x^3-50x=0\)

c) \(\left(x-2\right)\left(x^2+2+7\right)+2\left(x^2-4\right)-5\left(x-2\right)=0\)

d) \(3x\left(x-1\right)+x-1=0\)

e) \(2\left(x+3\right)-x^2-3x\) =0

f) \(4x^2-25-\left(2x-5\right)\left(2x+7\right)=0\)

g) \(x^3+27+\left(x+3\right)\left(x-9\right)=0\)

5
12 tháng 10 2017

Bài 1 :

a ) \(2x\left(x+1\right)+2\left(x+1\right)=\left(x+1\right)\left(2x+2\right)=2\left(x+1\right)^2\)

b ) \(y^2\left(x^2+y\right)-zx^2-zy=y^2\left(x^2+y\right)-z\left(x^2+y\right)=\left(x^2+y\right)\left(y^2-z\right)\)

c ) \(4x\left(x-2y\right)+8y\left(2y-x\right)=4x\left(x-2y\right)-8y\left(x-2y\right)=4\left(x-2y\right)^2\)

d ) \(3x\left(x+1\right)^2-5x^2\left(x+1\right)+7\left(x+1\right)=\left(x+1\right)\left(3x^2+3x-5x^2+7\right)=\left(x+1\right)\left(3x-2x^2+7\right)\)

e ) \(x^2-6xy+9y^2=\left(x-3x\right)^2\)

12 tháng 10 2017

Bài 1 :

f ) \(x^3+6x^2y+12xy^2+8y^3=\left(x+2y\right)^3\)

g ) \(x^3-64=\left(x-4\right)\left(x^2+4x+16\right)\)

h ) \(125x^3+y^6=\left(5x+y^2\right)\left(25x^2-5xy^2+y^4\right)\)

ai lm hộ mk vs

b1: 

ĐKXĐ: \(x\ne0;x\ne\pm2\)

Ta có : \(A=\left(\frac{4x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{8x^2}{x^2-4}\right)\left(\frac{x-1}{x\left(x-2\right)}-\frac{2\left(x-2\right)}{x\left(x-2\right)}\right)\)

\(=\left(\frac{4x^2-8x-8x^2}{\left(x-2\right)\left(x+2\right)}\right)\left(\frac{x-1-2x+4}{x\left(x-2\right)}\right)\)

\(=\left(\frac{4x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\right)\left(\frac{3-3x}{x\left(x-2\right)}\right)\)

\(=\frac{12\left(x-1\right)}{x-2}\)

Vậy ....

Ta có : \(A< 0\Rightarrow\frac{12\left(x-1\right)}{x-2}< 0\)

Đến đây xét 2 TH 12(x-1)<0 & (x-2)>0 hoặc 12(x-1)>0 & (x-2)<0

22 tháng 10 2019

toi ko bt

22 tháng 10 2019

\(x^2+y^2=0\)

Mà \(x^2\ge0;y^2\ge0\)nên \(x^2+y^2\ge0\)

(Dấu "="\(\Leftrightarrow x=y=0\))

30 tháng 10 2017

bài 1: phân tích đa thức thành nhân tử:

a) \(\dfrac{1}{4}x^2-5xy+25y^2\)

\(=\left(\dfrac{1}{2}x\right)^2-2.\dfrac{1}{2}x.5y+\left(5y\right)^2\)

\(=\left(\dfrac{1}{2}x-5y\right)^2\)

b) \(49\left(y-4\right)^2-9\left(y+2\right)^2\)

\(=\left[7\left(y-4\right)\right]^2-\left[3\left(y+2\right)\right]^2\)

\(=\left(7y-28\right)^2-\left(3y+6\right)^2\)

\(=\left(7y-28-3y-6\right)\left(7y-28+3y+6\right)\)

\(=\left(4y-34\right)\left(10y-22\right)\)

c) \(125-x^6\)

\(=5^3-\left(x^2\right)^3\)

\(=\left(5-x^2\right)\left[5^2+5x^2+\left(x^2\right)^2\right]\)

\(=\left(5-x^2\right)\left(25+5x^2+x^4\right)\)

31 tháng 10 2017

Bài 3 .

a) A =x2 + y2 - 4x + 2y + 5

A =( x2 + 2y + 1 ) + ( y2 - 2.2x + 22)

A = ( x + 1)2 +( y - 2)2

Do : ( x + 1)2 lớn hơn hoặc bằng 0 với mọi x

Suy ra : ( y - 2)2

Vậy , Amin = 0 khi và chỉ khi : x + 1 = 0 -> x = -1

y - 2 =0 -> y = 2

b)B = -4x2 - 9y2 - 4x + 6y + 3

B = - [ (2x)2 + 2.2x + 1] - [ ( 3y)2 - 2.3y + 1] + 5

B = -( 2x + 1)2 - ( 3y - 1)2 + 5

Do : -( 2x + 1)2 nhỏ hơn hoặc bằng 0 với mọi x

Suy ra : -( 2x + 1)2 + 5 nhỏ hơn hoặc bằng 5 với mọi x

-( 3y - 1)2 nhỏ hơn hoặc bằng 0 với mọi x

Suy ra : - ( 3y - 1)2 + 5 nhỏ hơn hoặc bằng 5 với mọi x

Vậy , Bmax = 5 khi và chỉ khi 2x + 1 =0 -> x = \(-\dfrac{1}{2}\)

3y - 1 = 0 -> y = \(\dfrac{1}{3}\)

12 tháng 1 2017

tích cho tớ nha cậu, mơn nhìu ạk

12 tháng 1 2017

Ai biết cách làm thì nhanh tay giải giùm mình nhé!!!!!!!!!!!!

mk đang cần gấp....<3<3<3<3<3<3