Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
\(\left|x-2017\right|\ge0\) với \(\forall x\)
\(\left|y-2018\right|\ge0\) với \(\forall x\)
\(\Rightarrow\left|x-2017\right|+\left|y-2018\right|\ge0\) với \(\forall x\)
\(\Rightarrow\) Không có giá trị của x; y thỏa mãn yêu cầu
Vậy \(x;y\in\varnothing\)
b) Ta có:
\(3.\left|x-y\right|^5\ge0\)
\(10.\left|y+\dfrac{2}{3}\right|^7\ge0\)
\(3.\left|x-y\right|^5+10.\left|y+\dfrac{2}{3}\right|^7\ge0\left(1\right)\)
Theo bài ra ta có: \(3.\left|x-y\right|^5+10.\left|y+\dfrac{2}{3}\right|^7\le0\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow3.\left|x-y\right|^5+10.\left|y+\dfrac{2}{3}\right|^7=0\)
\(\Rightarrow\left\{{}\begin{matrix}3.\left|x-y\right|^5=0\\10.\left|y+\dfrac{2}{3}\right|^7=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left|x-y\right|^5=0\\\left|y+\dfrac{2}{3}\right|^7=0\end{matrix}\right.\Rightarrow}\left\{{}\begin{matrix}x-y=0\\y+\dfrac{2}{3}=0\end{matrix}\right.\Rightarrow}\left\{{}\begin{matrix}x=y\\y=\dfrac{-2}{3}\end{matrix}\right.\Rightarrow}\left\{{}\begin{matrix}x=\dfrac{-2}{3}\\y=\dfrac{-2}{3}\end{matrix}\right.\)\(\)
a/ | x-2011y | + ( y-1)2017=0
Câu này có gì đó nhầm lẫn rồi
b/ (2x -1)2 + | 2y - x | - 8 = 12 - 5.22
=> (2x -1)2 + | 2y - x | - 8 = 12 - 20
=> (2x -1)2 + | 2y - x | = 0
=> (2x -1)2 + | 2y - x | = 0
Ta thấy (2x -1)2 và | 2y - x | luôn lớn hơn hoặc bằng 0
=> (2x -1)2 + | 2y - x | = 0
<=> (2x -1)2 = 0 và | 2y - x | = 0
=> 2x -1 = 0 2y - x = 0
=> x = 1/2 y = x/2 = 1/4
c/ | x - 2014y | + | x - 2015 | = 0
Tương tự b nhé bạn
I . Trắc Nghiệm
1B . 2D . 3C . 5A
II . Tự luận
2,a,Ta có: A+(x\(^2\)y-2xy\(^2\)+5xy+1)=-2x\(^2\)y+xy\(^2\)-xy-1
\(\Leftrightarrow\) A=(-2x\(^2\)y+xy\(^2\)-xy-1) - (x\(^2\)y-2xy\(^2\)+5xy+1)
=-2x\(^2\)y+xy\(^2\)-xy-1 - x\(^2\)y+2xy\(^2\)-5xy-1
=(-2x\(^2\)y - x\(^2\)y) + (xy\(^2\)+ 2xy\(^2\)) + (-xy - 5xy ) + (-1 - 1)
= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2
b, thay x=1,y=2 vào đa thức A
Ta có A= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2
= -3 . 1\(^2\) . 2 + 3 .1 . 2\(^2\) - 6 . 1 . 2 -2
= -6 + 12 - 12 - 2
= -8
3,Sắp xếp
f(x) =9-x\(^5\)+4x-2x\(^3\)+x\(^2\)-7x\(^4\)
=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x
g(x) = x\(^5\)-9+2x\(^2\)+7x\(^4\)+2x\(^3\)-3x
=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x
b,f(x) + g(x)=(9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x) + (-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x)
=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x
=(9-9)+(-x\(^5\)+x\(^5\))+(-7x\(^4\)+7x\(^4\))+(-2x\(^3\)+2x\(^3\))+(x\(^2\)+2x\(^2\))+(4x-3x)
= 3x\(^2\) + x
g(x)-f(x)=(-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x) - (9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x)
=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x-9+x\(^5\)+7x\(^4\)+2x \(^3\)-x\(^2\)-4x
=(-9-9)+(x\(^5\)+x\(^5\))+(7x\(^4\)+7x\(^4\))+(2x\(^3\)+2x\(^3\))+(2x\(^2\)-x\(^2\))+(3x-4x)
= -18 + 2x\(^5\) + 14x\(^4\) + 4x\(^3\) + x\(^2\) - x
1) a) \(3x\left(x-\dfrac{2}{3}\right)=0\Leftrightarrow\left\{{}\begin{matrix}3x=0\\x-\dfrac{2}{3}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)
vậy \(x=0;x=\dfrac{3}{2}\)
b) \(7\left(x-1\right)+2x\left(1-x\right)=0\Leftrightarrow7x-7+2x-2x^2=0\)
\(\Leftrightarrow\) \(-2x^2+9x-7=0\)
\(\Delta=9^2-4.\left(-2\right)\left(-7\right)=81-56=25>0\)
\(\Rightarrow\) phương trình có 2 nghiệm phân biệt
\(x_1=\dfrac{-9+5}{-4}=1\)
\(x_2=\dfrac{-9-5}{-4}=\dfrac{7}{2}\)
vậy \(x=1;x=\dfrac{7}{2}\)
a) Ta có : \(\hept{\begin{cases}\left(x+2\right)^2\ge0\forall x\\\left(y-3\right)^4\ge0\forall y\\\left(z-5\right)^6\ge0\forall z\end{cases}}\)
\(\Rightarrow\left(x+2\right)^2+\left(y-3\right)^4+\left(z-5\right)^6\ge0\forall x,y,z\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+2\right)^2=0\\\left(y-3\right)^4=0\\\left(z-5\right)^6=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=3\\z=5\end{cases}}}\)
b) Ta có : \(\left(2x-y\right)^2+\left(z-1\right)^8+\left(y-5\right)^{10}\ge0\forall x,y,z\) (1)
Ta lại có : \(\left(2x-y\right)^2+\left(z-1\right)^8+\left(y-5\right)^{10}\le0\) (2)
Từ (1) và (2) \(\Rightarrow\left(2x+y\right)^2+\left(z-1\right)^8+\left(y-5\right)^{10}=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(2x+y\right)^2=0\\\left(z-1\right)^8=0\\\left(y-5\right)^{10}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x=-y\\y=5\\z=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{5}{2}\\y=5\\z=1\end{cases}}\)