K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2020

Bài 2: 

Tìm GTLN: \(x^2+xy+y^2=3\Leftrightarrow xy=\left(x+y\right)^2-3\Rightarrow xy\ge-3\Rightarrow-7xy\le21\)

\(P=2\left(x^2+xy+y^2\right)-7xy\le2.3+21=27\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y=0\\xy=-3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\sqrt{3},y=-\sqrt{3}\\x=-\sqrt{3},y=\sqrt{3}\end{cases}}\)

Tìm GTNN: 

 Chứng minh \(xy\le\frac{1}{2}\left(x^2+y^2\right)\Rightarrow\frac{3}{2}xy\le\frac{1}{2}\left(x^2+y^2+xy\right)\)

\(\Rightarrow\frac{3}{2}xy\le\frac{3}{2}\Rightarrow xy\le1\Rightarrow-7xy\ge-7\)

\(P=2\left(x^2+xy+y^2\right)-7xy\ge2.3-7=-1\)

Chúc bạn học tốt.

16 tháng 3 2020

Làm bài 1 ha :) 

Áp dụng BĐT Cô si ta có:

\(\left(1-x^3\right)+\left(1-y^3\right)+\left(1-z^3\right)\ge3\sqrt[3]{\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)}\)

\(\Leftrightarrow\frac{3-\left(x^3+y^3+z^3\right)}{3}\ge\sqrt[3]{\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)}\)

Mặt khác:\(\frac{3-\left(x^3+y^3+z^3\right)}{3}\le\frac{3-3xyz}{3}=1-xyz\)

Khi đó:

\(\left(1-xyz\right)^3\ge\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)\)

Giống Holder ghê vậy ta :D

DD
16 tháng 5 2021

\(\left(x+y+1\right)\left(xy+x+y\right)=5+2\left(x+y\right)\)

\(\Leftrightarrow\left(x+y+1\right)\left(xy+x+y\right)=3+2\left(x+y+1\right)\)

\(\Leftrightarrow\left(x+y+1\right)\left(xy+x+y-2\right)=3\)

Từ đây bạn xét các trường hợp và giải ra nghiệm. 

28 tháng 4 2017

y=1

x=2

28 tháng 4 2017

bạn giải thích rõ ra đi

20 tháng 12 2015

Làm đi -___- làm rồi mới tick =="

21 tháng 11 2019

\(x^2+y^2+\left(\frac{xy+1}{x+y}\right)^2=2\)

\(\Leftrightarrow x^2+2xy+y^2+\left(\frac{xy+1}{x+y}\right)^2=2+2xy\)

\(\Leftrightarrow\left(x+y\right)^2+\left(\frac{xy+1}{x+y}\right)^2-2\left(1+xy\right)=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(\frac{xy+1}{x+y}\right)^2-2\left(x+y\right).\frac{xy+1}{x+y}=0\)

\(\Leftrightarrow\left(x+y-\frac{xy+1}{x+y}\right)^2=0\)

\(\Leftrightarrow\left(x+y-\frac{xy+1}{x+y}\right)=0\)

\(\Leftrightarrow x+y=\frac{xy+1}{x+y}\)

\(\Leftrightarrow xy+1=\left(x+y\right)^2\)

Vì x,y là các số hữu tỉ nên xy + 1 là bình phương của 1 số hữu tỉ (đpcm)

25 tháng 9 2019

x+xy+y+1=9

(x+1)(y+1)=9

áp dụng bđt ab<=(a+b)^2/4

->9<=(x+y+2)^2/4 -> x+y >=4

....