Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, đặt x/4=k suy ra x=4k,y/7=k suy ra y=7k thay x=4k, 7=7k vào xy=112 ta có: 4k.7k=112 28.k^2=112 k^2=112:28 k^2=4 k =4,-4 TH1 thay k=4 vào ta có:x=4k suy ra x=4.4=4 y=7k suy ra y=7.4=28 TH2 là tương tự , e và f là tương tự
a) x= 4y/7 thay vao có:
4y,y/7 =112
y.y =196
y = 14
x = 4.14/7 = 8
e) tuong tu
f) x2/25 = y2/16
k = 1/9
x = 5/9
y = 4/9
a) Ta có : \(\frac{2}{3}x=\frac{3}{4}y=\frac{5}{6}z\)=> \(\frac{2x}{3}=\frac{3y}{4}=\frac{5z}{6}\)=> \(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{6}{5}}\)
=> \(\frac{x^2}{\frac{9}{4}}=\frac{y^2}{\frac{16}{9}}=\frac{z^2}{\frac{36}{25}}\)
Đặt \(\frac{x^2}{\frac{9}{4}}=\frac{y^2}{\frac{16}{9}}=\frac{z^2}{\frac{36}{25}}=k\Leftrightarrow\hept{\begin{cases}x^2=\frac{9}{4}k\\y^2=\frac{16}{9}k\\z^2=\frac{36}{25}k\end{cases}}\)
=> \(x^2+y^2+z^2=\frac{9}{4}k+\frac{16}{9}k+\frac{36}{25}k\)
=> \(\frac{4921}{900}k=724\)
=> \(k=724:\frac{4921}{900}=\frac{651600}{4921}\)
Do đó : \(\hept{\begin{cases}x^2=\frac{9}{4}\cdot\frac{651600}{4921}\\y^2=\frac{16}{9}\cdot\frac{651600}{4921}\\z^2=\frac{36}{25}\cdot\frac{651600}{4921}\end{cases}}\)
Bài toán đây có sai sót j không vậy?Thấy số dữ quá đi :v
b) Ta có : \(\frac{x-1}{2}=\frac{y+2}{3}=\frac{z-3}{4}\)
=> \(\frac{x-1}{2}=\frac{2y+4}{6}=\frac{3z-9}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x-1}{2}=\frac{2y+4}{6}=\frac{3z-9}{12}=\frac{x-1-2y+4+3z-9}{2-6+12}=\frac{x-2y+3z-6}{8}=\frac{46-6}{8}=\frac{40}{8}=5\)
=> \(\hept{\begin{cases}\frac{x-1}{2}=5\\\frac{y+2}{3}=5\\\frac{z-3}{4}=5\end{cases}}\Rightarrow\hept{\begin{cases}x=11\\y=13\\z=23\end{cases}}\)
c) Đặt \(\frac{x}{3}=\frac{y}{16}=k\Rightarrow\hept{\begin{cases}x=3k\\y=16k\end{cases}}\)
=> xy = 16k . 3k
=> 48k2 = 192
=> k2 = 4
=> k = 2 hoặc k = -2
Do đó \(\left(x,y\right)\in\left\{\left(6,32\right);\left(-6,-32\right)\right\}\)
Bài 2 : a) \(\frac{4^2\cdot25^2+16\cdot125}{2^3\cdot5^2}\)
\(=\frac{\left(2^2\right)^2\cdot\left(5^2\right)^2+16\cdot125}{2^3\cdot5^2}\)
\(=\frac{2^4\cdot5^4+2^4\cdot5^3}{2^3\cdot5^2}\)
\(=\frac{2\cdot2^3\left(5^4+5^3\right)}{2^3\cdot5^2}\)
\(=\frac{2\cdot5^3\left(5+1\right)}{5^2}=\frac{2\cdot5\cdot5^2\cdot6}{5^2}=2\cdot5\cdot6=60\)
b) \(\frac{6^8\cdot2^4-4^5\cdot18^4}{27^3\cdot8^4-3^9\cdot2^{13}}\)
\(=\frac{\left(2\cdot3\right)^8\cdot2^4-\left(2^2\right)^5\cdot\left(2\cdot3^2\right)^4}{\left(3^3\right)^3\cdot\left(2^3\right)^4-3^9\cdot2^{13}}\)
\(=\frac{2^8\cdot3^8\cdot2^4-2^{10}\cdot2^4\cdot3^8}{3^9\cdot2^{12}-3^9\cdot2^{13}}\)
\(=\frac{2^{12}\cdot3^8-2^{14}\cdot3^8}{3^9\left(2^{12}-2^{13}\right)}\)
\(=\frac{3^8\left(2^{12}-2^{14}\right)}{3^9\left(2^{12}-2^{13}\right)}=\frac{3^8\left(2^{12}-2^{14}\right)}{3^8\left(2^{12}-2^{13}\right)\cdot3}=1\)
Đặt \(\frac{x}{4}=\frac{y}{3}=\frac{z}{5}=kak\left(kak\ne0\right)\)
\(\Rightarrow\hept{\begin{cases}x=4kak\\y=3kak\\z=5kak\end{cases}}\)
Mà \(x^2+y^2+z^2=200\)
\(\Leftrightarrow\left(4kak\right)^2+\left(3kak\right)^2+\left(5kak\right)^2=200\)
\(\Leftrightarrow16.kak^2+9.kak^2+25.kak^2=200\)
\(\Leftrightarrow kak^2.\left(16+9+25\right)=200\)
\(\Leftrightarrow kak^2.50=200\)
\(\Leftrightarrow kak^2=4\)
\(\Leftrightarrow\orbr{\begin{cases}kak=2\\kak=-2\end{cases}}\)
+) Với \(kak=2\)thì \(\hept{\begin{cases}x=4kak=8\\y=3kak=6\\z=5kak=10\end{cases}}\)
+) Với \(kak=-2\)thì \(\hept{\begin{cases}x=4kak=-8\\y=3kak=-6\\z=5kak=-10\end{cases}}\)
Vậy ...
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\left(k\ne0\right)\)
\(\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=5k\end{cases}}\)
Ta có : \(xyz=-30\)
\(\Leftrightarrow2k\times3k\times5k=-30\)
\(\Leftrightarrow30k^3=-30\)
\(\Leftrightarrow k^3=-1\)
\(\Leftrightarrow k=-1\)
Thay vào ta được :
\(\hept{\begin{cases}x=2k=-2\\y=3k=-3\\z=5k=-5\end{cases}}\)
Vậy ...
a) \(\frac{2x}{3}=\frac{3y}{4}\Leftrightarrow8x=9y\Rightarrow x=\frac{9y}{8}\left(1\right)\)
\(\frac{3y}{4}=\frac{4z}{5}\Leftrightarrow15y=16z\Rightarrow z=\frac{15y}{16}\left(2\right)\)
THay (1) và (2) vào biểu thức \(x+y+z=41\);ta được : \(\frac{9y}{8}+y+\frac{15y}{16}=41\)
\(\Rightarrow18y+16y+15y=656\Rightarrow y=\frac{656}{49}\)
Do đó : \(x=\frac{\frac{9.656}{49}}{8}=\frac{738}{49}\)
\(z=\frac{\frac{15.656}{49}}{16}=\frac{615}{49}\)
KL : \(x=\frac{738}{49};y=\frac{656}{49};z=\frac{615}{49}\)
b) Ta có : \(4x=3y\Rightarrow x=\frac{3y}{4}\)(1)
\(5y=6z\Rightarrow z=\frac{5y}{6}\)(2)
Thay (1) và (2) vào biểu thức \(x^2+y^2+z^2=500\);ta được :
\(\left(\frac{3y}{4}\right)^2+y^2+\left(\frac{5y}{6}\right)^2=500\)
\(\Rightarrow\frac{9y^2}{16}+y^2+\frac{25y^2}{36}=500\Rightarrow324y^2+576y^2+400y^2=288000\)
\(\Rightarrow1300y^2=288000\Rightarrow y^2=\frac{2880}{13}\Rightarrow\orbr{\begin{cases}y=\frac{24\sqrt{65}}{13}\\y=-\frac{24\sqrt{65}}{13}\end{cases}}\)
Với \(y=\frac{24\sqrt{65}}{13}\Rightarrow x=\frac{3\cdot\frac{24\sqrt{65}}{13}}{4}=\frac{18\sqrt{65}}{13};z=\frac{5\cdot\frac{24\sqrt{65}}{13}}{6}\)
\(y=-\frac{24\sqrt{65}}{13}\Rightarrow x=-\frac{18\sqrt{65}}{13};z=\frac{5\cdot-\frac{24\sqrt{65}}{13}}{6}\)
m: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{\dfrac{5}{2}}=\dfrac{z}{\dfrac{7}{4}}=\dfrac{3x+5y+7z}{3\cdot2+5\cdot\dfrac{5}{2}+7\cdot\dfrac{7}{4}}=\dfrac{123}{\dfrac{123}{4}}=4\)
Do đó: x=8; y=10; z=7
n: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Do đó: x=18; y=16; z=15
Mình chỉ bt làm câu d)
Cách 1:
\(\frac{x}{y}=\frac{4}{5}\Rightarrow\frac{x}{4}=\frac{y}{5}\Rightarrow x\times\frac{x}{4}=y\times\frac{y}{5}\)
\(\Rightarrow\frac{x^2}{4}=\frac{xy}{5}\Rightarrow\frac{x^2}{4}=\frac{180}{5}=36\)
\(\Rightarrow x^2=36\times4=144=\orbr{\begin{cases}\left(+12\right)^2\\\left(-12\right)^2\end{cases}\Rightarrow x=\orbr{\begin{cases}12\\-12\end{cases}}}\)
Với x = 12 thì y = 180 : 12 = 15
Với x = -12 thì y = 180 : (-12) = -15
* Cách 2:
\(\frac{x}{y}=\frac{4}{5}\Rightarrow\frac{x}{4}=\frac{y}{5}\Rightarrow x=\frac{4}{5}y\)
Ta có:
\(xy=180\Rightarrow\frac{4}{5}y\times x=180\times\frac{4}{5}=144\)
Mà \(\frac{4}{5}y=x\Rightarrow x^2=144\Rightarrow...\) làm tương tự câu a
a) Ta có :
\(\frac{x}{3}\) và \(\frac{y}{4}\)và \(x.y=192\)
Đặt \(x=y=k\)
\(\Rightarrow x=3k\)
\(y=4k\)
Mà \(3k.4k=192\)
\(\Rightarrow12k^2=192\)
\(\Rightarrow k^2=16\)
\(\Rightarrow k=\hept{\begin{cases}4\\-4\end{cases}}\)
Thay \(k=4\) và \(k=-4\)vào biểu thức \(x\) ta có :
\(x=3.4=12\)
\(x=3.\left(-4\right)=-12\)
Thay \(k=4\)và \(k=-4\)vào biểu thức \(y\)ta có :
\(y=4.4=16\)
\(y=4.\left(-4\right)=-16\)
Vậy \(x=\hept{\begin{cases}12\\-12\end{cases}}\)
và \(y=\hept{\begin{cases}16\\-16\end{cases}}\)
b)
:\(\frac{x}{5}\)và \(\frac{y}{4}\)và \(x^2+y^2=1\)
Ta có :
\(\frac{x}{5}=\frac{y}{4}=\frac{x^2+y^2}{5^2+4^2}=\frac{1}{41}\)
\(\Leftrightarrow\frac{x}{5}=\frac{1}{41}\)
\(\Leftrightarrow x=\frac{5}{41}\)
và \(\frac{y}{4}=\frac{1}{41}\)
\(\Leftrightarrow y=\frac{4}{41}\)
Vậy \(\)\(x=\frac{5}{41}\)và \(y=\frac{4}{41}\)
Đề bài bạn sai đấy